期刊文献+

自适应复杂网络中的病毒传播模型 被引量:1

Virus spreading model based on adaptive complex network
下载PDF
导出
摘要 提出了一个基于自适应复杂网络的病毒传播模型。模型中,易感节点为了不被感染,能够有意识地避开与感染节点的连接,此过程一方面使得网络结构发生了变化,另一方面网络结构的变化又反过来对病毒传播过程造成了影响。着重考查了模型中个体的躲避行为对病毒传播效果的影响,结果显示,在个体躲避行为的驱动下,系统的最终染病节点数会发生振荡,并且在一定的参数范围内系统出现了双稳状态。 A virus spreading model based on adaptive network is proposed.In this model,the susceptible nodes can break down the connection with the infected nodes in order not to be infected.During the evolving process,the structure of network is changed,and the changes of network structure in turn have an impact on the process of virus spreading.This paper studies the influence of individual’s avoidance behavior on the effect of virus spreading.The results show that,under the driving of the individual’s avoidance behavior,the final infected rate is oscillated,and the bistable state is observed when the pa- rameters are set at proper values.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期127-129,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.10647005) 贵州省教育厅自然科学基金(No.20090060 No.20090133)~~
关键词 自适应复杂网络 病毒传播 双稳状态 adaptive complex network virus spreading bistable state
  • 相关文献

参考文献11

  • 1Bailey N T J.The mathematical theory of infectious diseases and its applications[M].New York:Hafner Press, 1975.
  • 2Anderson R M,May R M.Infectious diseases in humans[M]. Oxford:Oxford University Press, 1992.
  • 3Diekmann O, Heesterbeek J A P.Mathematical epidemiology of infectious disease: model building, analysis and interpretation[M]. New York:John Wiley & Son Publisher,2000.
  • 4Pastor-Satorras R, Vespignani A.Epidemic spreading in scale-free networks[J].Phys Rev Lett,2001,84(4):3200-3203.
  • 5Pastor-Satorras R, Vespignani A.Epidemic dynamics and endemic states in complex networks[J].Phys Rev E,2001,63(6),.
  • 6Volchenkov D, Volchenkova L, Blanchard P H.Epidemic spread- ing in a variety of scale free networks[J].Phys Rev E, 2002,66 (4).
  • 7Liu Z H,Lai Y C,Ye N.Propagation and immunization of infec- tion on general networks with both homogeneous and heteroge- neous components[J].Phys Rev E, 2003,67 (3).
  • 8Liu J Z, Wu J S,Yang Z R.The spread of infectious disease on complex networks with household-structure[J].Physica A, 2004, 341:273-280.
  • 9Pastor-Satorras R, Vespignani A.Imrmmization of complex networks[J]. Phys Rev E,2001,65(3).
  • 10周海平,蔡绍洪,王春香.含崩塌概率的一维沙堆模型的自组织临界性[J].物理学报,2006,55(7):3355-3359. 被引量:11

二级参考文献10

  • 1李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512. 被引量:45
  • 2周海平,蔡绍洪,王春香.含崩塌概率的一维沙堆模型的自组织临界性[J].物理学报,2006,55(7):3355-3359. 被引量:11
  • 3Pastor-Satorras R, Vespignani A. Epidemic spreading in scalefree networks[J]. Phys Rev Lett, 2001, 84(4):3200-3203.
  • 4NEWMAN M E J, WATIS D J. Scaling and percolation in the small-world network model[J]. Phys Rev E, 1999, 60(6): 7332-7342.
  • 5Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Phys Rev E, 2001, 63 (6):066117.
  • 6Pastor-satorras R, Vespignani A. Immunization of complex networks[J]. Phys Rev E, 2001, 65(3):036134.
  • 7Volchenkov D, Volchenkova L, Blanchard Ph. Epidemic spreading in a variety of scale free networks[J]. Phys Rev E, 2002, 66(4) :046137.
  • 8Liu Z H, Lai Y C, Ye N. Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components[J]. Phys Rev E, 2003, 67(3):031911.
  • 9Madar N, Kalisky T, Cohen R, et al. Immunization and epidemics dynamics in complex networks [ J ]. Eur Phys J B, 2004, 38(2) :269-276.
  • 10巩龙,童培庆.二维格气模型中动力学相变与自组织临界现象[J].物理学报,2003,52(11):2757-2761. 被引量:4

共引文献12

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部