期刊文献+

文本褒贬倾向判别研究

Research on text commendatory-derogatory orientation discrimination
下载PDF
导出
摘要 在文本的向量空间表示模型下,针对文本褒贬倾向判别问题,提出了一种基于潜在语义分析的特征权重计算方法。除词频信息外,该方法考虑了潜在语义分析所提供的同义词、近义词信息对特征权重的影响。采用基于Fisher判别准则的特征选择方法,以支持向量机作为分类器,在2739篇语料(2008年中文倾向性分析评测)上进行了实验。实验结果表明,提出的特征权重计算方法对文本褒贬倾向判别是有效的。 On the basis of vector space model of text expression,a feature weight computing method for text commendatory-derogatory orientation discrimination is proposed based on Probabilistic Latent Semantic Analysis(PLSA).In addition to the word frequency of a feature,the information of its thesaurus and homoionym latently obtained by PLSA is taken in consider- ation to weight computing.Using the feature selection method based on Fisher criterion,and constructing a classifier with Sup- port Vector Machine(SVM),an experiment is conducted under a Chinese review text corpus with size of 2 739 documents (COAE2008).The experimental results indicate that the presented weight computing method based on PLSA is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期160-162,230,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60970014) 教育部高等学校博士点基金(No.200801080006) 山西省自然科学基金(No.2010011021-1) 太原市科技局明星专项(No.09121001) 山西省科技攻关项目~~
关键词 文本褒贬倾向判别 概率潜在语义分析 FISHER判别准则 支持向量机 text commendatory-derogatory orientation discrimination Probabilistic Latent Semantic Analysis(PLSA) Fisher dis- crimination criterion Support Vector Machine(SVM)
  • 相关文献

参考文献13

  • 1赵军,许洪波,黄萱菁,等.中文倾向性分析评测技术报告[R].北京:中文信息学会,2008.
  • 2Pang B,Lee L, Vaithyanathan S.Thumbs up?Sentiment classifica- tion using machine learning techniques[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2002: 79-86.
  • 3Li Jun, Sun Maosong.Experiment study on sentiment classifica- tion of Chinese review using machine learning technique[C]//Pro- ceedings of 2007 IEEE International Conference on Natural Lan- guage Proceeding and Knowledge Engineering,2007:393-400.
  • 4Ye Qiang, Zhang Ziqiong, Law 1LSenfiment classification of online reviews to travel destinations by supervised machine learning approaches[J].Expert Systems with Applications,2009,36:6527-6535.
  • 5Tan Songbo, Zhang Jin.An empirical study of sentiment analysis for Chinese documents[J].Expert Systems with Applications,2008, 34 (4) : 2622-2629.
  • 6Yang Yiming.An evaluation of statistical approaches to text cate- gorization[J].Information Retrieval, 1999,1 ( 1 ) : 76-88.
  • 7Hofmann T.Unsupervised learning by probabilistic latent semantic analysis[J].Machine Learning,2001,42:177-196.
  • 8Jin Xin, Zhou Yanzan, Mobasher B.Web usage mining based ot / probabilistic latent semantic analysis[C]//Proceedings of the 200~ / ACM SIGKDD,2004.. 197-205.
  • 9俞辉,景海峰.基于概率潜在语义分析的Web用户聚类[J].计算机工程与应用,2008,44(23):160-162. 被引量:4
  • 10Wang Zan, Tsim Y C, Yeung W S, et al.ProbabJlislic lalgnt semantic analyges(PLgA) in bibliometdc analysis for technolo- gy forecasting[J].Journal of Technology Management & Innova- tion, 2007,2 ( 1 ) : 11-24.

二级参考文献18

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 3Hofmann T.Latent semantic models for collaborative filtering[J], ACM Transactions on hfformation Systems, 2004,22( 1 ) : 89-115.
  • 4Xiao J.Measuring similarity of interests for clustering Web-users[C]// Proceedings of the 12th Australasian Database Conference(ADC2001). Queensland, Australia: ACS Tnc,2001.
  • 5Xu G,Zhang Y,Zhou X.A latent usage approach for clustering Web transaction and building user profile[C]//The First International Conference on Advanced Data Mining and Applications(ADMA 2005 ).Wuhan, China: Springer, 2005.
  • 6Zhang Y,Xu G,Zhou X.A latent usage approach for clustering Web transaction and building user profile[C]//ADMA,2005:31-42.
  • 7Jin X,Zhon Y,Mobasher B.A unified approach to personalization based on probabilistic latent semantic models of Web usage and content[C]//Proceedings of the AAAI 2004 WoAshop on Semantic Web Personalization(SWP'04),San Jose,2004.
  • 8Cohn D,Chang H.Leaming to probabilistieally identify authoritative[C]//Proc of the 17th International Conference on Machine Learning.San Franeiseo, CA : Morgan Kaufmann, 2000.
  • 9Hofmann T.Unsupervised learning by probabilistic latent semantic analysis[J].Machine Learning Journal, 2001,42( 1 ) : 177-196.
  • 10金千里,赵军,徐波.弱指导的统计隐含语义分析及其在跨语言信息检索中的应用[C]//全国第七届计算语言学联合学术会议.北京:清华大学,2003-08-01:527-533.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部