期刊文献+

团块与Mean-Shift结合的局部遮挡目标跟踪 被引量:5

Tracking method for object of partial occlusion based on combination of blob modeling and Mean-Shift
下载PDF
导出
摘要 传统的基于Mean-Shift的目标跟踪方法利用目标的全局特征进行跟踪,在局部遮挡情况下跟踪效果不佳。提出一种基于团块建模和Mean-Shift相结合的利用目标局部特征的运动目标跟踪方法,对目标进行团块建模,利用Mean-shift算法对各团块进行跟踪,在此基础上确定目标新位置。该方法能够在目标发生局部遮挡时,自动选取未被遮挡的团块的跟踪结果来确定目标的位置。为了提高方法对背景干扰的鲁棒性,采用背景加权的Mean-Shift算法。实验结果表明:该方法在局部遮挡的情况下可较好地进行目标跟踪,跟踪效果优于报导的基于Mean-Shift的方法。 Traditional Mean-Shift based object tracking adopts whole features for tracking,and is hard to track well under object occlusion.A new local feture based method is proposed,which combines the blob modeling and mean-shift together.Firstly, the blob modeling for the tracked object is built,and then each blob is tracked by the Mean-Shift method.Finally the new position of object is determined.The proposed method can select unoccluded blob for object tracking when occlusion occurs. The background-weighted Mean-Shift method is adopted to improve the robustness to the background disturbance.Experimen- tal results show that the method can track the object exactly under the circumstance of partial occlusion,and the performance is better than that of traditional Mean-Shift based method.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期183-185,共3页 Computer Engineering and Applications
基金 西安市科技计划项目(No.YF07006)
关键词 目标跟踪 局部遮挡 团块 MEAN-SHIFT算法 object tracking partial occlusion blob Mean-Shift algorithm
  • 相关文献

参考文献7

  • 1Cheng Y.Mean shitt, mode seeking, and clustering[J].IEEE Trans on Pattem Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 2Comaniciu D,Ramesh V,Meer EReal-time tracking of non-rig- id objects using mean shift[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition,2000:142-149.
  • 3Comaniciu D,Ramesh V,Meer P.Kemel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003,25 : 564-577.
  • 4Chen X,Ming Z,Chen A H.A discriminative feature-based mean- shift algorithm for object tracking[C]//Proceedings of IEEE Inter- national Symposium on Knowledge Acquisition and Modeling Workshop, 2008 : 217-220.
  • 5文志强,蔡自兴.一种基于mean shift的鲁棒性目标跟踪方法[J].计算机应用研究,2008,25(6):1753-1755. 被引量:1
  • 6Forssen P E.Low and medium level vision using channel repre- sentations[Z] .2004.
  • 7Forssen P E,Moe A.View matching with blob features[C]//Proeeed- ings of the 2nd Canadian Conference on Computer and Robot Vision (CRV ' 05 ) .Victora BC :IEEE,2005:228-235.

二级参考文献11

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2CHENG Y. Mean shift, mode seeking, and clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17 (8) :790-799.
  • 3COMANICIU D, RAMESH V, MEER P. Real-time tracking of nonrigid objects using mean shift[ C ]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Hilton Head Island : [ s. n. ], 2000 :142-149.
  • 4COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(5 ) :564-577.
  • 5COLLINS R T. Mean shift blob tracking through scale space [ C ]// Proc of Conf on Computer Vision and Pattern Recognition. Madison, Wisconsin: [ s. n. ] :2003 : 234-240.
  • 6COMANICIU D. Image segmentation using clustering with saddle point detection[ C]//Proc of IEEE Int'l Conf on Image Processing,Rochester. New York: [s.n.] ,2002: 297-300.
  • 7GEORGESCU B, SHIMSHONI I, MEER P. Mean shift based clustering in high dimensions : a texture classification example[ C ]//Proc of ICCV. Nice : [ s. n. ] ,2003 : 456- 463.
  • 8COMANICIU D. An algorithm for data-driven bandwidth selection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(2) : 281-288.
  • 9PENG N S,YANG J, LIU Z. Mean shift blob tracking with kernel histogram filtering and hypothesis testing [ J ]. Pattern Recognition Letters, 2005, 26(5): 605-614.
  • 10COLLINS R T, LIU Y, LEORDEANU M. Online selection of dis- criminative tracking features[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,27(10) : 1631-1643.

同被引文献58

  • 1王圣男,郁梅,蒋刚毅.智能交通系统中基于视频图像处理的车辆检测与跟踪方法综述[J].计算机应用研究,2005,22(9):9-14. 被引量:80
  • 2于成忠,朱骏,袁晓辉.基于背景差法的运动目标检测[J].东南大学学报(自然科学版),2005,35(A02):159-161. 被引量:48
  • 3常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 4Dorin C,Visvanathan R,Peter M.Kemel-based object track- ing.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 5Stauffer C,Grimson WEL.Leaning patterns of activity using real time tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 6Piccardi M.Background subtraction techniques:a review.IEEE International Conference on Systems,Man and Cybernetics, 2004,4:3099-3104.
  • 7Aheme F, Thacker N,Rockett EThe Bhatacharyya metric as an absolute similarity measure for frequency coded data.Kybe- metika, 1988,34(4):363-368.
  • 8Fukanaga K,Hostetler LD.The estimation of the gradient of a density function,with applications in pattern recognition. IEEE Trans Information Theory, 1975,21 (1):32-40.
  • 9Chengjun Liu,Happy W.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.Image Processing,2002,11(4):467- 476.
  • 10宋新,王鲁平,王平,沈振康.基于改进均值位移的红外目标跟踪方法[J].红外与毫米波学报,2007,26(6):429-432. 被引量:13

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部