期刊文献+

利用Mahalanobis距离的SAR图像溢油识别 被引量:3

Oil spills identification in SAR image using Mahalanobis distance
下载PDF
导出
摘要 利用合成孔径雷达(SAR)可在日夜及全天候条件下进行高分辨率溢油监测的优点,提出了一种基于特征向量的SAR图像溢油识别方法。在暗区边界确定的SAR图像中进行量算,得到特征向量,并采用Mahalanobis距离对目标物进行识别。经实验验证,选取的特征值数量合理,且对于判定是否为溢油效果明显;利用Mahalanobis距离进行判别,算法清晰,且准确率达到96%以上;与其他溢油判定方法相比,附加条件较少,且利于在计算机上编程实现。 A method on feature vector of the oil spills identification in SAR images is proposed,The advantages of Synthetic Aperture Radar(SAR) are useful,which can work on day and night and all weather conditions for high resolution monitoring of oil spills.The Mahalanobis distance approach has been developed in order to evaluate the probability that a dark area is a slick on SAR images.The experimental verification,a small number of characteristic values has been selected in the paper for that oil spills is significant.The algorithm of Mahalanobis distance discrimination is clear,and the accuracy rate reaches 96% or more.Compare to other oil spills determine methods,this approach appends less conditions and is conducive to computer programming.
作者 周慧 陈澎
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期195-197,203,共4页 Computer Engineering and Applications
关键词 合成孔径雷达(SAR)图像 溢油 特征向量 MAHALANOBIS距离 Synthetic Aperture Rada(rSAR)image oil spill feature vector Mahalanobis distance
  • 相关文献

参考文献8

  • 1梁小祎,张杰,孟俊敏.溢油SAR图像分类中的纹理特征选择[J].海洋科学进展,2007,25(3):346-354. 被引量:19
  • 2Lu J X.Marine oil spill detection, statics and mapping with ERS SAR imagery in Southeast Asia[J].lnternational Journal of Remote Sensing, 2003,24 ( 15 ) : 301-323.
  • 3袁礼海,宋建社,薛文通,郑永安.利用灰度和纹理特征的SAR图像分类研究[J].电光与控制,2007,14(4):58-62. 被引量:14
  • 4Keramitsoglou I, Cartalis C, Kiranoudis C T.Automatic identifi- cation of oil spill on satellite images[J].Environmental Modeling & Sottvcare, 2005,21 ( 5 ) : 640-652.
  • 5Frate F D, Petro A, Lichtenegger J, et al.Neural networks for oil spill detection using ERS-SAR data[J].IEEE Transactions on Geo- science and Remote Sensing, 2000,38 (5) : 2282-2287.
  • 6Brekke C,Solberg H A.Oil spill detection by satellite remote sensing[J].Remote Sens Environ,2005,95: 1-13.
  • 7Fiscella B, Giancaspro A, Nirchio F, et al.Oil spill detection using marine SAR images[J].Intemational Journal of Remote Sensing, 2000,21 (18) :3561-3566.
  • 8Topouzelis K, Kamthanassi V, Pavlakis P, et al.Detection and discri- mination between oil spills and look-alike phenomena through neural networks[J].Photogrammetry and Remote Sensing, 2007,62: 264-270.

二级参考文献23

  • 1吴樊,王超,张红.基于纹理特征的高分辨率SAR影像居民区提取[J].遥感技术与应用,2005,20(1):148-152. 被引量:33
  • 2郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 3OLIVER C,SHAUN Que-gan.Understanding synthetic aperture radar images[M].Norwood:Artech House,1998:245-255.
  • 4ARDUINI F,BERTA R,FIORAVANTI S,et al.Texture characterization and SAR image segmentation[C]// Proceedings of the Seventh MDSP Workshop on September 23-25,1991:9-16.
  • 5PIERCE L,LIANG P,DOBSON M.Texture estimation in SAR images of forests[J].IGARSS'03,Provedings,2003 IEEE International Volume 6,2003:4010-4012.
  • 6BEAULIEU J M,TOUZI R.Segmentation of textured scenes using polarimetric SARs[J].IGARSS '03,Proceedings,2003 IEEE International Volume 1,2003:446-448.
  • 7WINKLER G.Image analysis random fields and dynamic monte carlo methods[M].Berlin:Springer-Verlag,1995:195-205.
  • 8BARALDI A,PARMIGGIANI F.An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J].IEEE Trans.Geosci.Remote Sensing,1995,33:293-304.
  • 9Fabio Dell'Aequa,Paolo Gamba.Texture-based characterization of urban environments on satellite SAR images[J].IEEE Trans.Geosci.Remote Sensing,2003,41 (1):153-159.
  • 10PELLEMANS A,GBOS W,KONINGS H,et al.Oil spill detection on the North Sea using ERS-1 SAR data[EB/OL].[2006-07-06].http://www.neonet.nl/browse.

共引文献31

同被引文献29

  • 1罗翌陈,杨辉华,李灵巧,翟雷.SIFT算法在CUDA加速下的实时人物识别与定位[J].计算机科学,2012,39(S3):391-394. 被引量:11
  • 2梁小祎,张杰,孟俊敏.溢油SAR图像分类中的纹理特征选择[J].海洋科学进展,2007,25(3):346-354. 被引量:19
  • 3Brekke C,Solberg A. Oil spill detection by salellite remote sensing[J]. Remote Sensing of Environment,2005,95(1): 1-13.
  • 4Alpers W, Huhnerfuss H. Radar signatures of oil films floating on the sea surface and the marangoni effect[J]. Journal of Geophysical Research.1988,93(C4): 3642-3648.
  • 5Fanny G,Mercier G,Collard F,et al: Operational oil-slick characterization by SAR imagery and synergistic data[J]. IEEE Journal of Oceanic Engineering, 2005,30 : 487-495.
  • 6Liu P,Zhao C,Li X,et al. Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm[J]. International Journal of Remote Sensing,2010,31(17/18) : 4819-4833.
  • 7Migliaccio M,Tranfaglia M,Ermolov S. A physical approach for the observation of oil spills in SAR images[J]. IEEE Journal of Oceanic Engineering,2005,30(3): 496-507.
  • 8Chang L, Tang Z, Chang S, et al. A region-based GLRT detection of oil spills in SAR images[J]. Pattern Recognition Letters, 2008,29 (14) : 1915-1923.
  • 9Tsai H C, Wang W C, Wang J C,et al. Long distanceperson identification using height measurement and facerecognition[C]//Region 10 Conference TENCON. USAIEEE, 2009: 1-4.
  • 10Y Yi, B Abidi, N D Kalka, et al. High magnification andlong distance face recognition[C]//Biometrics Symposium:Special Session on Research at the Biometric ConsortiumConference, Baltimore, MD, 2006: 1-6.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部