期刊文献+

C_(80)X_(12)(X=H,F,Cl,Br)的结构和稳定性 被引量:1

Theoretical study on the structures and stability of C_(80)X_(12)(X=H,F,Cl,Br)
原文传递
导出
摘要 为了考察勒烯衍生物结构与稳定性关系,采用密度泛函理论方法对C80X12(X=H,F,Cl,Br)进行了系统计算究.结表明,在C80X12(X=H,F)异构体中,最低能量异构体都违反五元环分离规则.然而,在C80X12(X=Cl,Br)异构体中,最低能量异构体都满足五元环分离规则.由于van der Waals半径较小,H或F加成到碳笼上时外部原子之间排斥作用小,因此在其优结构中,H或F优先加成到2个五元环共用碳原子上.相反,对于氯化、溴化勒烯,为了避免外部加成原子之间在重空间排斥作用,其优结构中Cl或Br优先加成到1,4-位点上.计算结还显,氢化、卤化反应热(C80+6X2→C80X12)遵循如下顺序,即C80F12>C80Cl12>C80H12>C80Br12.这些结表明勒烯衍生物稳定性和衍生化模与加成原子尺和电性有关. Density functional theory calculations were performed on C80X12(X=H,F,Cl,Br) to gain insight into their structures and stability.The results demonstrate that the lowest energy isomers are IPR-violating for C80X12(X=H,F),however,for C80X12(X= Cl,Br),the lowest energy isomers are IPR-satisfying.Since the van der Waals radius of H and F atoms are small,the resulting steric strain among added atoms is slight or negligible for C80X12(X=H,F),and thus the lowest energy structures are those with the H and F atoms bonded to the carbon atoms of the fused pentagons.However,Cl and Br atoms tend to bond to 1,4-cites to avoid strong steric repulsion.The calculated results also reveal that the order of the energy of reaction C80 +6X2 →C80X12 (X=H,F,Cl,Br) is C80F12 C80Cl12 C80H12 C80Br12.These results suggest that the stability and addition patterns of fullerene derivatives are also related to the radius and electronegativity of added atoms.
出处 《中国科学:化学》 CAS CSCD 北大核心 2011年第7期1156-1162,1228-1232,共7页 SCIENTIA SINICA Chimica
基金 中央高校基本科业务费(XDJK2010C002) 中博后基金(20090460705)资助
关键词 富勒烯 衍生物 结构 稳定性 密度泛函理论 fullerene derivatives structures stability density functional theory
  • 相关文献

参考文献22

  • 1沈洪涛,王东来,孙晓萍,翟玉春.C_(80)衍生物C_(80)X_(12)(X=H,F,Cl,Br)的理论研究[J].东北大学学报(自然科学版),2010,31(2):217-220. 被引量:2
  • 2Kroto HW.The stability of the fullerenes Cn,with=24,28,32,36,50,60and70. . 1987
  • 3Campbell EEB,Fowler PW,Mitcheli D,Zerbetto F.Increasing cost of pentagon adjacency for larger fullerenes. . 1996
  • 4Albertazzi E,Domene C,Fowler PW,Heine T,Seifert G,Alsenoy CV,Zerbetto F.Pentagon adjacency as a determinant of fullerene stability. . 1999
  • 5Wang CR,Shi ZQ,Wan LJ,Dunsh L,Shu CY,Tang YL,Shinohara H.C64H4:Production,isolation,and structural characterizations of a stable unconventional fulleride. . 2006
  • 6Xu L,Shao XG,Cai WS.Structure,stability,and thermochemistry of the fullerene derivatives C64X6 (X=H,F,Cl). . 2009
  • 7Tan YZ,Liao ZJ,Qian ZZ,Chen RT,Wu X,Liang H,Han X,Zhu F,Zhou SJ,Zheng ZP,Lu X,Xie SY,Huang RB,Zheng LS.Two I h:symmetry-breaking C60isomers stabilized by chlorination. . 2008
  • 8Tan YZ,Li J,Zhou T,Feng YQ,Lin SC,Lu X,Zhan ZP,Xie SY,Huang RB,Zheng LS.Pentagon-fused hollow fullerene in C78 family retrieved by chlorination. . 2010
  • 9http://www.mathematik.uni-bielefeld.de/-CaGe/ .
  • 10Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JA,Jr,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J.GAUSSIAN03,Revision B.03. . 2003

二级参考文献14

  • 1Hennrieh F H, Michel R H, Fischer A, et al. Isolation and characterization of C80 [ J ]. angewandte Chemie: International Edition, 1996,35 (15) : 1732 - 1734.
  • 2Wang C R, Sugai T, Kai T, et al. Production and isolation of an ellipsoidal C80 fullerene [ J ]. Chemical Communications, 2000(7) :557 - 558.
  • 3Bethune D S, Johnson R D, Salem J R, et al. Atoms in carbon cages: the structure and properties of endohedral fullerenes[J]. Nature, 1999,366(6451) :123- 128.
  • 4Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity [ J ]. Nature, 1999,401(6748):55-57.
  • 5Zuo T, Beavers C M, Duchamp J C, et al. Isolation and structural characterization of a family of endohedral fulIerenes including the large, chiral cage fullerenes Tb3N @ Cs8 and TbsN@C86 as well as the Ih and Dsh isomers of Tb3N@C80 [J]. Journal of the American Chemical Society, 2007,129 (7) :2035 - 2043.
  • 6Simeonov K S, Amsharov K Y, Jansen M. C80 Cl12: a chlorine derivative of the chiral D2-C80 isomer-empirical rationale of halogen-atom addition pattem[J ]. Chemistry : A European Journal, 2009,15(8) : 1812 - 1815.
  • 7Hitehcock P B, Taylor R. Single crystal X-ray structure of tetrahedral C60F36: the most aromatic and distorted fullerene [J]. Chemical Communications, 2002(18) :2078 - 2079.
  • 8Hitchcock P B, Avent A G, Martsinovich N, et al. C1C70F38 contains four planar aromatic hexagons; the parallel between fluorination of [ 60 ]- and [ 70 ] fullerenes [ J ]. Organic Letters, 2005,7 (10) : 1975 - 1978.
  • 9Xie S Y, Gao F, Lu X, et al. Capturing the labile fullerene [50] as CsoCllo[J].Science, 2004,304(4) :699- 699.
  • 10Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C48 F18 [ J ]. Science, 2005,309 (7) : 278 - 281.

共引文献1

同被引文献14

  • 1Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE, C60: buckminsterfullerene. Nature, 1985, 318: 162-163.
  • 2Fowler PW, Manolopoulos DE. An Atlas of Fullerenes. Oxford: Oxford University Press, 1995.
  • 3Kroto HW. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 1987,329: 529-531.
  • 4Bettinger HF, Yakobson BI, Scuseria GE. Scratching the surface of buckminsterfullerene: the barriers for stone wales transformation through symmetric and asymmetric transition states. JAm Chem Soc, 2003, 125: 5572-5580.
  • 5Weng QH, He Q, Liu T, Huang HY, Chen JH, Gao ZY, Xie SY, Lu X, Huang RB, Zheng LS. Simple combustion production and characterization of octahydro[60] fullerene with a non-IPR C60 cage. JAm Chem Soc, 2010, 132: 15093-15095.
  • 6Tan YZ, Liao ZJ, Qian ZZ, Chen RT, Wu X, Liang H, Han X, Zhu F, Zhou SJ, Zheng Z, Lu X, Xie SY, Huang RB, Zheng LS. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nature Mater, 2008, 7: 790-794.
  • 7Jia JF, Wu HS, Xu XH, Zhang XM, Jiao H. Fused five-membered rings determine the stability of CwF60. J Am Chern Soc, 2008, 130: 3985-3988.
  • 8Tan YZ, Xie SY, Huang RB, Zheng LS. The stabilization of fused-pentagon fullerene molecules. Nature Chem, 2009, I: 450-460.
  • 9Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Peters son GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao 0, Nakai H, Kiene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev 0, Austin AJ, Cammi R, PomeJli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas 0, Malick DK, Rabuck AD, Raghavachari K, oresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L,Fox DJ, Keith T, AI-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, People JA. GAUSSIAN 09, Revision B.03. Pittsburgh PA: Gaussian Int, 2009.
  • 10Prinzbach H, Weber K. From an insecticide to Plato's universe-the pagodane route to dodecahedranes: new pathways and new perspectives. Angew Chem Int Ed, 1994,33: 2239-2257.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部