期刊文献+

一类具脉冲效应的竞争生态数学模型的持久性和渐进行为

Permanence and Asymptotic Behavior of a Competitive Ecological Mathematic Model with Impulses
原文传递
导出
摘要 研究了一类具有脉冲效应的非自治Lotka-Valterra竞争生态数学模型系统,运用李雅普诺夫函数和比较定理,给出了系统的持久性和渐进行为的充分条件. The permanence and asymptotic behavior of the nonauto-nomous Lotka-Valterra competitive system with impulses are investigated.By using the methods of comparison theorem and Liapunov functions, sufficient conditions for its permanence and asymptotic behavior are derived.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第13期245-252,共8页 Mathematics in Practice and Theory
基金 湖南省教育厅资助科研项目(10C0258)
关键词 脉冲效应 竞争 持久性 渐进行为 impulsive effects competition permanence asymptotic behavior
  • 相关文献

参考文献9

  • 1朱焕桃,张钟德.一类带时滞的阶段结构捕食模型的定性分析[J].数学的实践与认识,2010,40(24):155-160. 被引量:2
  • 2江晓武,余敏,宋新宇.具有阶段结构和Leslie-Gower HollingⅡ功能性反应的脉冲食饵-捕食系统(英文)[J].生物数学学报,2008,23(2):202-208. 被引量:10
  • 3Li W,Huo H.Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics. Journal of Computational and Applied Mathematics . 2005
  • 4Nieto J J.Impulsive resonance periodic probiems of first order. Journal of Applied Mathematics . 2002
  • 5BLiu,ZTeng,WLiu.Dynamic behaviors of the periodic Lotka-Volterra competing system with impulsive perturbations. Chaos Solit Fract . 2007
  • 6Akhmetov M U,Zafer A.Successive Approximation Method for Quasilinear Impulsive Differential Equations with Control. Journal of Applied Mathematics . 2000
  • 7LIU Y J,LIN X N,JIANG D Q.Existence andmultiplicity of positive periodic solutions to functionalequation with impulse. Nonlinear Analysis . 2004
  • 8Bainov D D,Simeonov P S.Impulsive Differential Equations: Periodic Solutions and Applications. . 1993
  • 9A.M.Samoilenko,N.A.Perestyuk.Impulsive Differential Equations. . 1995

二级参考文献14

  • 1liu S,Chen L,Agarwal R.Recent progress on stage-structured population dynamics[J].Math Comput Model,2002,36:1319-1360.
  • 2Redheffer R.A new class of voilerra differential equations for which the solutions are globally asymptotically stable[J].J Diff Eqns,1989,19:121-132.
  • 3Zeng G,Chen L,Chen J.Persistence and periodic orbits for two-species nonautonomous diffusion lotka-volterra models[J].Math Comp Model,1994,20:69-80.
  • 4Song X,Chen L.Optimal harvesting and stability for a two species competitive system with stage structure[J].Math Biosci,2001,170:173-186.
  • 5Wang W,Ma Z.Asymptotic behavior of a predator-prey system with diffusion and delays[J].J Math Anal Appl,1997,206:191-204.
  • 6Hale J K.Theory of Functional Differential Equations[M].Springer,New York,1997.
  • 7Kuang Y.Delay Differential Equations with Applications in Population Dynamics[]..1993
  • 8Aiello W G,Freedman H I.A time-delay model of single-species growth with stage structure[].Mathematical Biosciences.1990
  • 9Wood S N,Blgthe S P,Gurney W S C,Nibet R M.Instability in Mortality Estimation Schemes Related to Stage-structure Population Models[].SIMA J math Appl in Medicine and Biology.1989
  • 10Leslie P H,Gower J C.The properties of a stochastic modelfor the predator-prey type of interaction between two species[].Biometrika.1960

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部