期刊文献+

指数多项式闭合法求带位移偶次方项非线性随机振子响应的概率解

Exponential Ploynomial Closure Procedure for the Probabilistic Solution of Nonlinear Stochastic Oscillator with Even Order Terms in Displacement
下载PDF
导出
摘要 本文用指数多项式闭合(Exponential Polynomial Closure,EPC)法分析了具非零均值响应的带位移偶次方项非线性随机振子的响应概率密度函数解。给出了求解过程并通过算例分析验证了指数多项式闭合法在此情况下的有效性。数值结果显示,指数多项式闭合法得到的响应概率密度结果与蒙特卡洛模拟的结果符合较好,尤其是在概率密度函数的尾部区域。 The exponential polynomial closure(EPC) method was employed to analyze the probability density function of the responses of nonlinear stochastic oscillator with non-zero mean responses.The solution procedure was presented and an example was given to show the effectiveness of EPC method in this case.The numerical results show that the results obtained with EPC method agree well with those obtained with Monte Carlo simulation,specially in the tails of the probability density function of the responses.
出处 《力学季刊》 CSCD 北大核心 2011年第2期178-182,共5页 Chinese Quarterly of Mechanics
基金 澳门大学研究与发展行政办公室基金
关键词 指数多项式闭合(EPC)法 FOKKER-PLANCK方程 非零均值 位移偶次方非线性 exponential-polynomial closure(EPC) method Fokker-Planck equation non-zero mean value nonlinearity of even-order term in displacement
  • 相关文献

参考文献21

  • 1Booton R C. Nonlinear Control Systems with Random Inputs. IRE Trans[M]. Circuit Theory, 1954, CT1. 1: 9-19.
  • 2Caughey T K. Equivalent linearization techniques[J]. J Acous Soc Am, 1963,35:1706-1711.
  • 3Stratonovich R L. Topics in the Theory of Random Noise[M]. New York: Gordon and Breach, 1963.
  • 4Roberts J B, Spanos P D. Stochastic averaging: an approximate method of solving random vibration problems[J]. Int J Non-Linear Mech, 1986, 21:111-134.
  • 5Assaf S A, Zirkie L D. Approximate analysis of non-linear stochastic systems[J]. Int J Control, 1976, 23:477-492.
  • 6Crandall S H. Perturbation techniques for random vibration of nonlinear systems[J]. J Acoust Soc Am, 1963, 35: 1700-1705.
  • 7Lutes L D. Approximate technique for treating random vibrations of hysteretic systems[J]. J Acoust Soc Am, 1970, 48:299-306.
  • 8Cai G Q, Lin Y K. A new approximation solution technique for randomly excited non-linear oscillators[J]. Int J Non-Linear Mech, 1988 23, 409-420.
  • 9Zhu W Q, Soong T T, Lei Y. Equivalent nonlinear system method for stochastically excited Hamiltonian systems[J]. ASME J Appl Mech, 1994, 61: 618-623.
  • 10Tagliani A. Principle of maximum entropy and probability distributions: definition and applicability field[J]. Probab Eng Mech, 1989, 4:99 - 104.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部