期刊文献+

Au掺杂硅纳米线的稳定性和电子结构 被引量:2

Stability and Electronic Structures of Au-Doped Silicon Nanowires
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理的方法,对Au掺杂[100]方向氧钝化硅纳米线(SiNWs)不同位置的形成能、能带结构、态密度及磁性进行了计算,考虑了Au占据硅纳米线的替代、四面体间隙和六角形间隙的不同位置.结果表明:Au偏爱硅纳米线中心的替代位置.Au掺杂后的硅纳米线引入了杂质能级,禁带宽度变窄.对于Au替代掺杂,杂质能级主要来源于Au的d、p态和Si的p态,由于Au的d态和Si的p态的耦合,Au掺杂硅纳米线具有铁磁性.对于间隙掺杂,杂质能级主要求源于Au的s态,是非磁性的.另外,根据原子轨道和电子填充模型分析了其电子结构和磁性. We calculated the formation energies, band structure, density of states, and magnetic properties of Au-doped hydrogen-passivated silicon nanowires (SiNWs) along the [100] direction at different positions by first-principles method based on density functional theory. We considered the substitutional positions, the interstitial positions with tetrahedral symmetry, and the interstitial positions with hexagonal symmetry. The results show.that Au preferentially occupies the center substitutional position of the silicon nanowire. The doping of Au into silicon nanowires introduces an impurity level near the Fermi level. The bandgap values were less than those of pure silicon nanowires. For the substitutionally doping of silicon nanowires the density of states near the Fermi level were mainly contributed to by the Au d and p orbitals and the Si p orbital. Ferromagnetic behavior of the substitutionally doped nanowire was observed upon coupling the Au d and Sip states. For the interstitial doping of silicon nanowires nonmagnetic behavior was predicted. In addition, we also interpret the electronic and magnetic properties in terms of a simple analysis based on the atomic orbitals and electron filling.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第7期1615-1620,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(10774036) 河北省自然科学基金(E2008000631)资助项目~~
关键词 硅纳米线: 第一性原理:掺杂方式:形成能:态密度:磁性 Silicon nanowire First-principles Doping-method Formation energy Densityofstate Magnetic property
  • 相关文献

参考文献25

  • 1Cui, Y.; Zhong, Z.; Wang, D.; Wang, W.; Lieber, P. Nano Lett. 2003, 3 (2), 149.
  • 2Hu, S. F.; Wang, W. Z.; Liu, S. S.; Wu, Y. C.; Song, S. L.; Huang, T. Y. Solid State Commun. 2003, 125, 351.
  • 3Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421,241.
  • 4Tang, Y. H.; Sun, X. H.; Au, F. C. K.; Liao, L. S.; Peng, H. Y.; Lee, C. S.; Lee, S. T.; Sham, T. K. Appl. Phys. Lett. 2001, 79, 1673.
  • 5Zhou, G. W.; Li, H.; Sun, H. R; Yu, D. P.; Wang, Y. Q.; Huang, X. J.; Chen, Q. L.; Zhang, Z. Appl. Phys. Lett. 1999, 75, 2447.
  • 6Huang, C. T.; Hsin, C. L.; Huang, K. W.; Lee, C. Y.; Yeh, E H.; Chen, L. J. Appl. Phys. Lett. 2007, 91, 093133.
  • 7Wu, H. W.; Tsai, C. J.; Chen, L. J. Appl. Phys. Lett. 2007, 90, 043121.
  • 8Landman, U.; Barnett, R. N.; Scherbakov, A. G.; Avouris, P. Phys. Rev. Lett. 21}00, 85, 1958.
  • 9白燕枝 赵高峰 沈学锋 孙建敏 王渊旭.物理化学学报,2011,:39-39.
  • 10喻力,郑广,何开华,曾中良,陈琦丽,王清波.过渡金属掺杂SnO_2的电子结构与磁性[J].物理化学学报,2010,26(3):763-768. 被引量:19

二级参考文献3

共引文献19

同被引文献20

  • 1Au F C K,Wong K W,TangY H,et al.Electron Field Emission from Silicon Nanowires[J].Appl.Phys.Lett.,1999,75:1700-1702.
  • 2Chung S W,Yu J Y,Heath J R,et al.Silicon Nanowire Devices[J].Appl.Phys.Lett.,2000,76:2068-2070.
  • 3Cui Y,Wei Q Q,Park H,et al.Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species[J].Science,2001,293:1289-1292.
  • 4Landmanu B,Scherbakov A G,et al.Metal-semiconductor Nanocontacts:Silicon Nanowires[J].Phys.Rev.Lett.,2000,85(9):1958-1961.
  • 5Cui Y,Duan X F,Hu J T,et a1.Doping and Electrical Transport in Silicon Nanowires[J].J.Phys Chem B,2000,104(22):5213-5216.
  • 6Cui Y,Lieber C M.Functional Nanoscale Electronic Device Assembled Using Silicon Nanowire Building Blocks[J].Science,2001,291:851-853.
  • 7Dilts S M,Mohmmad A M,Lew K K,et a1.Fabrication and Electrical Characterization of Arrays.Proceedings of MRS Fall Meeting:Symposium Group-ⅣSemiconduconductor Nanostructurs[C].Boston,Massn Chusetts.USA,2004:9-10.
  • 8Huang C T,Hsin C L,Huang K W,et al.Er-doped Silicon Nanowires with1.54μm Light-emitting and Enhanced Electrical Field Emission Properties[J].Appl.Phys.Lett.,2007,91:093133-3.
  • 9Fernandez-Serrd M V,Adessi Ch,Blase X.Surface Segregation and Backscattering in Doped Silicon Nanowires[J].Phys.Rev.Lett.,2006,96:166805-4.
  • 10Singh A K,Kumar V,Kote R,et al.Effects of Morphology and Doping on the Electronic and Structural Properties of Hydrogenated Silicon Nanowires[J].Nano Lett.,2006,6:920-925.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部