期刊文献+

锂离子电池用Cr_2O_3/TiO_2复合材料的电化学性能 被引量:5

Electrochemical Performance of Cr_2O_3/TiO_2 Composite Material for Lithium Ion Batteries
下载PDF
导出
摘要 采用高温固相反应法合成了Cr_2O_3/TiO_2复合材料,运用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等对其结构、形貌和电化学性能进行了表征.研究结果表明:TiO_2掺杂能够显著改善Cr_2O_3的充放电循环性能,Cr_2O_3/TiO_2复合材料在充放电循环22周后仍有454mAh·g^(-1)的可逆循环容量,容量保持率达到了73.6%,主要归因于TiO_2掺杂能够显著提高Cr_2O_3的电导率.Cr_2O_3/TiO_2复合材料首次放电过程中由于电极体积膨胀导致的固体电解质相界面(SEI)膜迅速增厚和活性材料电导率的降低可能是其首次充放电过程中存在较大不可逆容量和循环容量衰减的重要原因. The Cr2O3/TiO2 composite material was prepared by a high-temperature solid-state reaction and its structure, morphology, and electrochemical performance were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), charge-discharge test, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). We found that TiO2 doping significantly improved the cyclic performance of Cr2O3 and the reversible capacity of the Cr2O3/TiO2 composite material was 454 mAh· g^-1 after 22 charge-discharge cycles, therefore, it has a capacity retention of 73.6% and this is mainly due to TiO2 doping that significantly increases the conductivity of Cr2O3. Our results revealed that the initial large irreversible capacity and the capacity fading could be attributed to an increase in the thickness of the solid electrolyte interface (SEI) film and a reduction in the conductivity of the materials. This was caused by a volume expansion of the Cr2O3/TiO2 electrode during the first discharge process.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第7期1666-1672,共7页 Acta Physico-Chimica Sinica
基金 中央高校基本科研业务费专项资金(2010LKHX03 2010QNB04 2010QNB05) 中国矿业大学科技攀登计划(ON090237)资助项目~~
关键词 锂离子电池 Cr2O3/TiO2复合材料 转化反应 电导率 固体电解质相界面膜 Lithium ion battery Cr2O3/TiO2 composite material Conversion reaction Conductivity Solid electrolyte interface film
  • 相关文献

参考文献29

  • 1于锋,张敬杰,王昌胤,袁静,杨岩峰,宋广智.锂离子电池正极材料的晶体结构及电化学性能[J].化学进展,2010,22(1):9-18. 被引量:32
  • 2周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94. 被引量:76
  • 3Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
  • 4Pereira, N.; Dupont, L.; Tarascon, J. M.; Klein, L. C.; Amatucci, G. G.J Electrochem. Soc. 2003, 150 (9), A1273.
  • 5Pereira, N.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2002, 149 (3), A262.
  • 6Debart, A.; Dupont, L.; Patrice, R.; Tarascon, J. M. Solid State Sei. 2006, 8, 640.
  • 7Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F. Science 2002, 296 (5575), 2012.
  • 8Mauvemay, B.; Doublet, M. L.; Monconduit, L.J. Phys. Chem. Solids 2006, 67, 1252.
  • 9Silva, D. C. C.; Crosnier, O.; Ouvrard, G.; Greedan, J.; SafaSefat, A.; Nazar, L. F. Electrochem. Solid-State Lett. 2003, 6 (8), A162.
  • 10Xue, M. Z.; Fu, Z. W. Electrochem. Commun. 2006, 8 (12), 1855.

二级参考文献115

  • 1庄全超,陈作锋,董全峰,姜艳霞,周志有,孙世刚.锂离子电池电解液中甲醇杂质对石墨电极性能影响机制的电化学阻抗谱研究[J].高等学校化学学报,2005,26(11):2073-2076. 被引量:18
  • 2Choi W, Manthiram A. J Electrochem. Soc., 2007, 154: A614--A618.
  • 3Yu L H, Qiu X P, Xi J Y, et al. Electrochim. Acta, 2006,51: 6406--6411.
  • 4Tu J, Zhao X B, Cao G S, et al. Electrochim. Acta, 2006, 51: 6456--6462.
  • 5Li T, Qiu W H, Zhang G H, et al. J. Power Sources, 2007, 174:515--518.
  • 6FangY K, Wang J M, Ye X B, et al. Mater. Chem. Phys., 2007, 103:19--23.
  • 7Masquelier C, Wurm C, Rodriguez-Carvajal J, et al. Chem. Ma- ter. , 2000, 12:525--532.
  • 8Gaubicher J, Wurm C, Goward G, et al. Chem. Mater. , 2000, 12 : 3240--3242.
  • 9Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc. , 2003, 125 : 10402--10411.
  • 10Saidi M Y, Barker J, Huang H, et al. J. Power Sources, 2003, 119/121 : 266--272.

共引文献215

同被引文献287

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部