期刊文献+

微小等离子体反应器的导出机理研究 被引量:1

Research of extraction mechanism for microplasma reactor
下载PDF
导出
摘要 提出了一种通过空心阴极底部的微孔及外加偏置电场的方法实现微小等离子体导出的机制,并采用二维流体模型对其进行了数值仿真研究。当工作气体为SF6、工作气压为2~9kPa、微孔半径为0.25μm时,F原子最大束流密度在(1.53~5.62)×1014cm-3.s-1之间,SF5+最大束流密度在(2.46~7.83)×1016cm-3.s-1之间。工作气压为5kPa时,样品表面处F的平均能量为3.82eV,散射角在-14°~14°之间;SF5+的平均能量为25eV,散射角为-13°~14°。当偏置电压在10~50V之间变化时,SF5+平均能量在52~58eV之间变化。上述F、SF5+密度满足硅基底材料的有效刻蚀需要,验证了扫描刻蚀加工的可行性。 An extraction mechanism based on micronozzle in the bottom of the microhollow cathode and applied bias electrical field is proposed, and digitally simulated with a two dimensional fluid model. When the operating gas is SF6 and its pressure is 2-9kPa, radius of the micronozzle is 0.251am, maximum F atom flux density is between (1.53-5.62)×10^14cm-3.s-1, maximum SF5+ flux density is between (2.46-7.83)×10^16cm-3·s-1. When gas pressure is 5kPa, average energy of F atom at sample surface is 3.82eV, dispersion angle is -14°-14°; average energy of SF5 is 25eV, dispersion angle is -13°-14°. When applied voltage across hollow cathode and sample is between 10-50V (sample as cathode), average energy of SF5+ is between 52-58eV. The density of F and SF5 in the simulation result could satisfy the requirement for silicon etching, and the feasibility of scanning vlasma etching validated.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2011年第1期91-96,共6页 Nuclear Fusion and Plasma Physics
基金 国家自然科学基金资助项目(50605061) 江苏省微纳生物医疗器械设计与制造重点实验室资助(JSNBI200905)
关键词 扫描等离子体刻蚀加工 微小等离子体反应器 导出机制 Scanning plasma etching Microplasma reactor Extraction mechanism
  • 相关文献

参考文献10

  • 1Christophe Cardinaud, Marie-Claude Peignon, Pierre- Yves Tessier. Plasma etching: principles, mechanisms, application to micro- and nanotechnologies [J]. Applied Surface Science, 2000, 164(1-4): 72-83.
  • 2Guo W, Sawin H H. Review of profile and roughening simulation in microelectronics plasma etching [J]. Journal of Physics D: Applied Physics, 2009, 42(19): 1-17.
  • 3Liptak R W, Devetter B, Thomas II1 J H, et al. SF6 plasma etching of silicon nanocrystals [J]. Nanotechnology, 2009, 20(3): 1-5.
  • 4Wilson C G, Gianchandan Y B. Silicon micro-machining using in situ DC microplasmas [J]. Journal of Microelectro Mechanical System, 1996, 10(1): 50-54.
  • 5Sankaran R M, Giapis K P. Maskless etching of silicon using patterned microdischarges [J]. Appl. Phys. Lett., 2001, 79(5): 593-595.
  • 6Snow E S, Campbell Pual M, Perkins F Keith. Nano- fabrication with proximal probes[J]. Proceedings of the IEEE, 1997, 85(4): 870-873.
  • 7Deepak R Sahoo, Walter Haibede, Abu Sebastian, et al. High-throughput intermittent-contact scanning probe microscopy [J]. Nanotechnology, 2010, 21 (7): 1-7.
  • 8Seungchul Kim, Seung-Woo Kim. AFM-based nanofabrication with assistance of femtosecond pulse laser radiation [J]. Journal of Physics: Conference Series, 2007, 61: 550-554.
  • 9王海,文莉,褚家如.一种新型微小等离子体发生器[J].微细加工技术,2005(4):59-64. 被引量:2
  • 10Gray David C, Tepermeister I, Sawin Herbert H. Phenomenological modeling of ion-enhanced surface kinetics in fluorine-based plasma etching [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1993, 11 (4): 1243-1257.

二级参考文献13

  • 1Musil J. Deposition of thin films using microwave plasmas: Present status and trends[J] . Vacuum 1996,47(2) : 145 - 155.
  • 2Marxer C, Thio C, Gretillat M-A, et al. Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications[J]. J Microelectromech Syst, 1996,6(3) :227 - 285.
  • 3Oehrlein G S. Surface processes in low pressure plasmas[J] . Surface Science, 1997,386(1 - 3) :222 - 230.
  • 4Wilson C G, Gianchandan Y B. Silicon micromachining using in situ DC microplasmas[J]. J Micro-electromech Syst, 1996, 10(1) : 50 - 54.
  • 5Sankaran R M, Giapis K P. Maskless etching of silicon using patterned microdischarges[J]. Appl Phys Lett, 2001,79: 593 - 595.
  • 6Park Sung-Jin, Chen Jack, Wagner Clark J, et al. Microdischarge arrays: A new family of photonic devices[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2002, 8 (1) : 139 -147.
  • 7Schoenbach K H, Moselhy M,Shi W,et al.Microhollow cathode discharges [J] .J Vac Sci Technol, 2003, A21 (4) : 1260 - 1265.
  • 8Snow E S, Campbell Pual M, Perkins F Keith. Nanofabfieation with proximal probes [J].Proceedings of the IEEE, 1997, 85 (4): 601 -611.
  • 9Zhang M, Bullen D, Chung S, et al.A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays [J]. Nanotechnology,2002,13:212 - 217.
  • 10Petre A R, Bazavan M, Covlea V,et al. Characterization of a DC plasma with hollow cathode effect[J] . Romanian Reports in Physics, 2004,56(2) :271 - 276.

共引文献1

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部