摘要
提出了一种通过空心阴极底部的微孔及外加偏置电场的方法实现微小等离子体导出的机制,并采用二维流体模型对其进行了数值仿真研究。当工作气体为SF6、工作气压为2~9kPa、微孔半径为0.25μm时,F原子最大束流密度在(1.53~5.62)×1014cm-3.s-1之间,SF5+最大束流密度在(2.46~7.83)×1016cm-3.s-1之间。工作气压为5kPa时,样品表面处F的平均能量为3.82eV,散射角在-14°~14°之间;SF5+的平均能量为25eV,散射角为-13°~14°。当偏置电压在10~50V之间变化时,SF5+平均能量在52~58eV之间变化。上述F、SF5+密度满足硅基底材料的有效刻蚀需要,验证了扫描刻蚀加工的可行性。
An extraction mechanism based on micronozzle in the bottom of the microhollow cathode and applied bias electrical field is proposed, and digitally simulated with a two dimensional fluid model. When the operating gas is SF6 and its pressure is 2-9kPa, radius of the micronozzle is 0.251am, maximum F atom flux density is between (1.53-5.62)×10^14cm-3.s-1, maximum SF5+ flux density is between (2.46-7.83)×10^16cm-3·s-1. When gas pressure is 5kPa, average energy of F atom at sample surface is 3.82eV, dispersion angle is -14°-14°; average energy of SF5 is 25eV, dispersion angle is -13°-14°. When applied voltage across hollow cathode and sample is between 10-50V (sample as cathode), average energy of SF5+ is between 52-58eV. The density of F and SF5 in the simulation result could satisfy the requirement for silicon etching, and the feasibility of scanning vlasma etching validated.
出处
《核聚变与等离子体物理》
CAS
CSCD
北大核心
2011年第1期91-96,共6页
Nuclear Fusion and Plasma Physics
基金
国家自然科学基金资助项目(50605061)
江苏省微纳生物医疗器械设计与制造重点实验室资助(JSNBI200905)