期刊文献+

基于改进分层强化学习的CPS指令多目标动态优化分配算法 被引量:8

Multi-objective Dynamic Optimal Dispatch Method for CPS Order of Interconnected Power Grids Using Improved Hierarchical Reinforcement Learning
下载PDF
导出
摘要 应用经典强化学习方法的控制性能标准(control performance standard,CPS)下自动发电控制(automatic generation control,AGC)指令(CPS指令)由调度端至电网各台机组的分配过程不可避免出现维数灾难问题。提出应用分层强化学习的方法,将全网机组按调频时延做初次分类,CPS指令逐层分配形成任务分层结构。在分层Q学习算法层与层之间引入一个时变协调因子,改进的分层Q学习算法有效提高原算法收敛速度。奖励函数中设计不同的权值线性组合,展示保守及乐观控制下系统CPS控制水平和调节成本的变化关系。南方电网统计性仿真分析表明,改进分层Q学习算法较分层Q学习算法平均收敛时间缩短47%,在复杂随机扰动的环境中改进算法能有效提高系统CPS考核合格率,并降低调节成本约5%。 This paper presented an improved hierarchical reinforcement learning (HRL) algorithm to solve the curse of dimensionality problem in the multi-objective dynamic optimization of automatic generation control (AGC) order dispatch based on control performance standard (CPS), The CPS order dispatch task was decomposed into several subtasks by classifying the AGC committed units according to their response time delay of power regulatng. A time-va~'ing coordination factor was introduced between layers of HRL to speed up the algorithm. Numbers of linear combination of weights in reward function were designed to optimize hydro capacity margin and AGC production cost. The application of improved hierarchical Q-learning in the China southern power grid model shows that the proposed method can speed up the algorithm by 47%, enhance the performance of AGC systems in CPS assessment, and save AGC production cost over 5%, compared with the hierarchical Q-learning and genetic algorithm.
出处 《中国电机工程学报》 EI CSCD 北大核心 2011年第19期90-96,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(50807016) 广东省自然科学基金项目(9151064101000049) 中央高校基本科研业务费专项资金(2009ZM0251)~~
关键词 分层强化学习 协调因子 随机优化 控制性能标准 自动发电控制 hierarchical reinforcement learning (HRL) coordination factor stochastic optimization control performance standard (CPS) automatic generation control (AGC)
  • 相关文献

参考文献10

二级参考文献90

共引文献480

同被引文献91

  • 1唐跃中,张王俊,张健,陈明.基于CPS的AGC控制策略研究[J].电网技术,2004,28(21):75-79. 被引量:61
  • 2段献忠,何飞跃.考虑通信延迟的网络化AGC鲁棒控制器设计[J].中国电机工程学报,2006,26(22):35-40. 被引量:21
  • 3孔莲芳,罗天祥,吴捷.基于状态收缩约束的模型预测负荷频率控制[J].中国电机工程学报,2007,27(7):18-22. 被引量:14
  • 4胡国强,贺仁睦.基于交互式多目标决策方法的水火电力系统日有功负荷优化分配[J].电网技术,2007,31(18):37-42. 被引量:12
  • 5Yao M, Shoults R R, Kelm R. AGC logic based on NERC's new control performance standard and disturbance control standard[J]. IEEE Trans. on Power Systems, 2000, 15(2): 855-857.
  • 6Zeynelgil H L, Demiroren A, Sengor N S. The application of ANN technique to automatic generation control for multi-area power system[J]. Electrical Power and Energy Systems, 2002, 24(5): 345-354.
  • 7Luis O, Jose Ignacio de la F, Juan L Z, et al. New design for the Spanish AGC scheme using an adaptive gain controller[J]. IEEE Trans. on Power Systems, 2004, 19(3): 1528-1537.
  • 8Hassan B, Fatemeh D, Takashi H. A new intelligent agent-based AGC design with real-time application ~lJ [J]. IEEE Trans. on Systems, Man, and Cybernetics-Part C: ~/pplication and Reviews, 2012, 42(6): 994-1002.
  • 9Bevrani H Robust power system frequency control[M]. 1st ed. New York: Springer-Verlag, 2009: 19-24.
  • 10Imthias T P, Nagendra P S, Sastry P S. A reinforcement learning approach to automatic generation control [J]. Electric Power Systems Research, 2002, 63(1): 9-26.

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部