期刊文献+

鹤壁八矿二_1煤层煤与瓦斯突出危险性预测 被引量:1

Coal and Gas Outburst Fatalness Prediction of Ⅱ_1 Coal Seam in No.8 Mine of Hebi Coal Company
下载PDF
导出
摘要 基于地质动力区划、区域地应力场测量和模拟研究成果、瓦斯地质研究成果、分析研究成果、地质勘探成果,提取有关信息进行综合评判分析,应用多因素模式识别概率预测方法对影响突出的诸因素进行模式度量,对鹤壁八矿二1煤层煤与瓦斯突出的危险性做出分类,划分煤与瓦斯突出危险区、突出威胁区和无突出危险区,对煤与瓦斯突出危险性做出评估,得出包括影响因素评价的煤与瓦斯突出危险性的定量综合判据,为开采二1煤层防治突出采取有针对性的措施提供了技术支撑。 Based on geo-dynamic division, regional stress measure and simulation study, gas geology research, fractal research and geology reconnoitering result, the extraction information is synthetically intelligent analyzed. On the basis of analyzing internal relations between every influence factors and outburst fatalness, the multi-factor pattern recognition probability prediction method is applied to pattern measure multi-factor affecting outburst, to classify the fatalness of II1 coal seam in the eighth mine of Hebi, to divide into coal and gas outburst dangerous area, threat area and safety area, to assess and predict the danger of coal and gas outburst. Consequently the quantificational synthesis criterion including influence factors assessment is obtained. The technical support is provided for adopting appropriate measures to prevent outburst of II1 coal seam.
作者 马永庆
出处 《煤炭技术》 CAS 北大核心 2011年第7期90-91,共2页 Coal Technology
关键词 煤与瓦斯突出 地质动力区划 模式识别 区域预测 coal and gas outburst geo-dynamic division pattern recognition regional prediction
  • 相关文献

参考文献4

二级参考文献17

  • 1南存全,冯夏庭.凹形圆弧断裂构造的简化力学模型及其解析分析[J].岩石力学与工程学报,2004,23(23):3984-3989. 被引量:10
  • 2煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995..
  • 3Guo De-yong, Song Guang-tui.Research on cool structure indices to coal and gas outbursts in Pingdingshan Mine Area, China-Journal of Coal Science&Engineering ( China )2002 ( 1 ).
  • 4Lama R D, Bodziony J. Management of outburst in underground coal mines[J]. International Journal of Coal Geology, 1998, 35(1): 83 -115.
  • 5Feng Xiating, Katsuyama, Wang Yongjia, et al. A new direction intelligent rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(1): 135 -141.
  • 6Christopher J C, Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2): 121-167.
  • 7Amari S, Wu S. Improving support vector machine classifier by modifying kernel function[J]. Neural Networks, 1999, 12(6): 783 -789.
  • 8Bartlett P L, Taylor S J. Generalization performance on support vector machines and other pattern classifiers [A]. In: Advances in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999.236 - 248.
  • 9S Raudys. How good are support vector machines[J]. Neural Networks, 2000, 13(1): 17-19.
  • 10Trajkovic M, Heedley M. Fast comer detection[J]. Image and Vision Computing, 1998, 16(2): 13-15.

共引文献60

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部