期刊文献+

基于自适应分组的大规模路径覆盖测试数据进化生成 被引量:7

Evolutionary generation of test data for many paths coverage based on adaptive grouping
原文传递
导出
摘要 复杂软件大规模路径覆盖测试数据生成问题普遍存在,但缺乏有效的解决方法,为此提出一种基于自适应分组的大规模路径覆盖测试数据进化生成方法.在进化过程中,通过合并满足条件的组,将测试数据生成问题转化为数量不断减少的约束多目标优化问题,采用多种群遗传算法加以解决,并给出了合并后的种群形成策略.将所提出的方法应用于基准测试程序,结果表明可以大大减少测试数据生成时间,为提高软件测试效率提供了一条可行途径. Complicated software often contains many paths,and there is few effective method of generating test data to cover these paths up to present.Therefore,a method of evolutionary generation of test data for many paths coverage based on adaptive grouping is presented.During the process of evolution,the groups satisfying given conditions are merged based on the similarity.Then the problem of generating test data is transformed into multi-objective optimization problems with constraints whose number decreases gradually.A multi-population genetic algorithm is employed to solve the above problems,especially,the strategy of forming new populations after merging some groups is presented.The proposed method is applied to one benchmark program,and the experimental results show that,the method can decrease the time spent in generating test data greatly,and provides a feasible approach to improve the efficiency of software testing.
出处 《控制与决策》 EI CSCD 北大核心 2011年第7期979-983,共5页 Control and Decision
基金 国家自然科学基金项目(61075061) 高等学校博士学科点专项科研基金项目(20100095110006) 江苏省"六大人才高峰"层次人才项目(2008125) 江苏省"333高层次人才培养工程"项目(苏人才办[2009]24号)
关键词 软件测试 路径覆盖 遗传算法 分组 自适应 software testing path coverage genetic algorithm grouping adaptation
  • 相关文献

参考文献1

共引文献7

同被引文献55

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部