期刊文献+

基于改良蚁群算法的神经网络分类规则提取

Rules Extraction from Artificial Neural Networks for Classification Based Improved Ant Colony Algorithm
下载PDF
导出
摘要 在数据挖掘领域,分类获得了很大的关注度,其主要目的是预测数据对象的所属类别。分类方法可分为基于规则和不基于规则两大类,其中神经网络由于在预测、从经验中学习、从先前样本中泛化等方面的优秀表现,使其成为分类领域的一个重要的方法,并往往能够获得很高的分类准确性,然而其非常有限的解释能力成为了制约其应用的一大缺陷。提出了一种基于改良蚁群算法的神经网络分类规则提取方法,通过改良的蚁群算法来填补神经网络有限的解释能力,从数据中提取出分类规则。实验证明,该方法能够很好的辅助神经网络,从要分类的数据中获取规则。 Classification obtains great concern in the field of data mining.Its main purpose is to predict the classification of data objects.Classification can be divided into two major categories of rule-based and non-rule-based,however because of the excellent performance that artificial neural network(ANN) can obtain from prediction,studying from experience and generalizing from the previous samples,making it an important method of classification.Although ANNs can achieve high classification accuracy,their explanation capability is very limited,as to restrict its application.This paper presents an improved ant colony algorithm based on ANNs classification rule extraction method,an improved ant colony algorithm is to help solve the ANN's limited explanation capability to extract rules from the data.Experiments show that this approach could coordinate neural network to obtain rules of classified data well.
出处 《计算机系统应用》 2011年第7期81-85,共5页 Computer Systems & Applications
关键词 数据分类 数据挖掘 规则提取 蚁群算法 神经网络 data classification data mining rules extraction ant colony algorithm artificial neural networks
  • 相关文献

参考文献11

  • 1Hand D J, Mannila H, Smyth P. Principles of Data Mining (Adaptive Computation and Machine Learning), MIT Press, 2001.
  • 2Andrews R, Diederich J, Tickle AB, A survey, critique of techniques for extracting rules from trained artificial neural networks, Knowledge Based Systems, 1995,8(6): 373-389.
  • 3Bologna G. Is the worth generating rules from neural network ensembles. Journal of Applied Logic, 2004,(2): 325-348.
  • 4Elalfi AE, Haqueb R, Elalami ME. Extracting rules from trained neural network using GA for managing E-business. Applied Soft Computing, 2004,(4):65-77.
  • 5Kahramanli H, Allahverdi N. Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Systems with Applications, 2009,(36): 1513-1522.
  • 6Lale 0zbakir a, Adil Baykasoglu b, Sinem Kulluk a, Htlse-yin Yapici c. An ant colony based algorithm for rule extraction from trained neural networks. Expert Systems with Applications, 2009. doi:10.1016/j.eswa.2009.04.058.
  • 7Diego A. Computational Intelligence: For Engineering and Manufacturing. Boston, Springer US, MA: USA, 2007.
  • 8Dorigo M, Maniezzo V, Colomi A. Positive feedback as a search strategy. Technical Report N.91-016 Politecnico di Milano, 1991.
  • 9Hiroyasu T, Miki M, Ono Y, Minami, Y. Ant colony for continuous functions. The Science and Engineering, Doshisha University. 2000.
  • 10Tan C, Yu Q, Ang JH. A dual-objective evolutionary algorithm for rulesextraction in data mining. Computational Optimization and Applications, 2006, 34: 273-294.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部