期刊文献+

脂质超负荷心肌胰岛素抵抗及其防治策略 被引量:1

Strategies for preventing and curing insulin resistance in lipid-overloaded cardiac myocytes
下载PDF
导出
摘要 胰岛素抵抗(insulin resistance,IR)是2型糖尿病(type 2 diabetes mellitus,T2DM)最基本也是最重要的病理机制,常出现在T2DM之前,并贯穿于整个病程始终。糖尿病心肌病是T2DM的常见并发症,也是引起心力衰竭,导致60-75%T2DM患者死亡或残废的主要原因[1]。从糖尿病到心力衰竭的分子机制比较复杂,包括血管内皮功能紊乱、糖基化终产物沉积、动脉硬化和冠状动脉病变等。而心肌IR是诱导心脏功能障碍的主要因素。研究发现, Insulin resistance is a central pathological mechanism of type 2 diabetes mellitus.Diabetic cardiomyopathy and heart failure are frequent co-morbid conditions in type 2 diabetic patients.Long-chain fatty acids(LCFAs) are the major energy source for the heart to sustain contractile activity,and the diabetic heart becomes almost entirely dependent on LCFAs for energy production.Elevated intracellular levels and prolonged accumulation of LCFA metabolites worsen the state of insulin resistance,and further induce diabetic cardiomyopathy and heart failure.It is indicated that sarcolemmal fatty acid uptake and mitochondrial β-oxidation are the rate-limiting steps in cardiac LCFA flux and utilization.Therefore,the inhibitions of carnitine palmitoyltransferase(CPT-I),β-oxidation enzymes and CD36/plasma membrane fatty acid-binding protein(FABPpm) translocation are the preferable strategies of limiting LCFA entry and LCFA metabolite accumulation,thus regressing cardiac insulin resistance,and eventually preventing diabetic heart failure.
作者 李春艳
出处 《中国病理生理杂志》 CAS CSCD 北大核心 2011年第5期1029-1033,共5页 Chinese Journal of Pathophysiology
基金 湖北省教育厅重点资助项目(No.D20104104)
关键词 长链脂肪酸 肉碱软脂酰转移酶 CD36 胰岛素抵抗 Long-chain fatty acid Carnitine palmitoyltransferase CD36 Insulin resistance
  • 相关文献

参考文献28

  • 1许樟荣,王玉珍,刘彦君,陈平,敬华,王爱红,宋晓菲,杨晋德,倪彩虹.2型糖尿病合并不同数目代谢综合征组分患者的临床表现及对血管病变的影响[J].中国糖尿病杂志,2006,14(4):250-252. 被引量:40
  • 2Szczepaniak LS,Victor RG,Orci L,et al.Forgotten but not gone:the rediscovery of fatty heart,the most common unrecognized disease in America[J].Circ Res,2007,101(8):759-767.
  • 3Schwenk RW,Luiken JJ,Bonen A,et al.Regulation of sarcolemmal glucose and fatty acid transporters in cardiac disease[J].Cardiovasc Res,2008,79(2):249-258.
  • 4Pelsers MM,Stellingzoerff T,van Loon LJ.The role of membrane fatty-acid transporters in regulating skeletal muscle substrate use during exercise[J].Sports Med,2008,38(5):387-399.
  • 5Nickerson JG,Momken I,Benton CR,et al.Protein-mediated fatty acid uptake:regulation by contraction,AMP-activated protein kinase,and endocrine signals[J].Appl Physiol Nutr Metab,2007,32(5):865-873.
  • 6Eaton S.Control of mitochondrial β-oxidation flux[J].Prog Lipid Res,2002,41(3):197-239.
  • 7Carley AN,Atkinson LL,Bonen A,et al.Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice[J].Arch Physiol Biochem,2007,113(2):65-75.
  • 8Bonen A,Han XX,Habets DD,et al.A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin-and AICAR-stimulated fatty acid metabolism[J].Am J Physiol Endocrinol Metab,2007,292(6):E1740-E1749.
  • 9Luiken JJ,Niessen HE,Coort SL,et al.Etomoxir-induced partial carnitine palmitoyltransferase(CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates[J].Biochem J,2009,419(2):447-455.
  • 10Luiken JJ.Sarcolemmal fatty acid uptake vs.mitochondrial β-oxidation as target to regress cardiac insulin resistance[J].Appl Physiol Nutr Metab,2009,34(3):473-480.

二级参考文献7

共引文献39

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部