期刊文献+

高分辨率细胞牵引力频域反演技术 被引量:2

High-resolution cellular traction force recovery in two-dimensional Fourier domain
下载PDF
导出
摘要 目的针对经典细胞牵引力反演算法的病态特征,发展基于二维傅立叶空间的高分辨率细胞牵引力反演新技术。方法根据基底表面位移测量数据和积分核函数在二维傅立叶空间各自的分布特点和规律,探讨牵引力反演过程中出现的反卷积病态现象,构建一套自适应加窗滤波算法来约束反演计算过程中出现的高频噪声放大效应。结果经典细胞牵引力频域反演算法(Fourier transform traction cytometry,FTTC)具有明显的反卷积病态特征,特别是在位移采样网格较密情况下,牵引力反演结果极不可靠。利用本文提出的频域滤波方法则能显著削弱位移场高频噪声对于力反演结果的影响。结论这种细胞牵引力频域反演新方法可有效抑制反问题病态现象的发生,显著提高力场测量的稳定性和空间分辨率。该方法有望在细胞与胞外基质相互作用研究中得到广泛应用。 Objective To develop a new set of algorithms for high-resolution cellular traction force recovery based on two-dimensional Fourier domain by addressing the ill-posed nature of classic cellular force traction recovery.Methods By exploring the inherent characteristics and rules of displacement data on the substrates and Green's function in the Fourier domain,the phenomenon of ill-posed deconvolution arising in cellular force traction recovery was investigated and a set of self-adaptive filtering algorithms was consequently developed to remarkably restrain the high frequency noise amplification.Results The ill-posed nature of classical Fourier transform traction cytometry(FTTC) made cellular traction force recovery extremely unstable,especially for relatively dense displacement data sampling.In contrast,the proposed self-adaptive filtering algorithms based on FTTC could make cellular traction force distribution more stable and reliable,as the effect of high frequency noise in displacement field on recovery results was weakened significantly.Conclusions This new technique for cellular traction force recovery can effectively suppress the noise and therefore improve the stability of force recovery procedure and spatial resolution,which is expected to find wider application in the study of cell-substrate interactions.
出处 《医用生物力学》 EI CAS CSCD 2011年第3期225-231,共7页 Journal of Medical Biomechanics
基金 国家自然科学基金资助项目(10872008 11002003 11072004)
关键词 细胞力学 基底 弹性模量 数字图像相关 细胞牵引力 傅立叶空间 Cellular mechanics Substrates Elastic modulus Digital image correlation Cellular traction force Fourier domain
  • 相关文献

参考文献6

二级参考文献103

  • 1陈少华,刘磊,王自强.NANOINDENTATION OF THIN-FILM-SUBSTRATE SYSTEM DETERMINATION OF FILM HARDNESS AND YOUNG'S MODULUS[J].Acta Mechanica Sinica,2004,20(4):383-392. 被引量:2
  • 2张东升,罗淼,韩永胜.材料力学性能显微测试系统[J].实验力学,2006,21(5):651-654. 被引量:10
  • 3Pittenger MF, Mackay AM, Beck SC, et al. Maltilineage potential of adult human mesenchymal Stem Cells[J]. Science,1999, 284: 143-147.
  • 4Altman GH, Horan RL, Martin I, et al. Cell differentiation by mechanical stress[J]. FASEB J. 2002, 16(2): 270-272.
  • 5Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification[J].Cell, 2006, 126: 677-689.
  • 6Goldsmith HL, Takamura K, Bell D. Shear-induced collisions between human blood cells[J].Ann N Y Pc.ad Sci, 1983, 416: 299-318.
  • 7Simon SI, Chambers D, Sklar LA. 1990. Flow cytometric analysis and modeling of cell-cell adhesive interaction: the neutrophil as a model[J]. J Cell Biol, 1990, 111 (6): 2747-2756.
  • 8Long M, Goldsmith HL, Tees DFJ, et al. Probabilistic modeling of shear-induced formation and breakage of doublets cross-linked by receptor-ligand bonds [J]. Biophys J, 1999,76: 1112-1128.
  • 9Liang S, Fu CL, Wagner D, et al. Two-dimensional kinetics of β2-integrin and ICAM-1 bindings between neutrophils and melanoma cells in a shear flow [ J]. Am J Physiol Cell Physiol, 2008, 294: C743-C753.
  • 10Finger EB, Puri KD,Alon R, et al.Adhesion through L-selectin requires a threshold hydrodynamic shear[ J ]. Nature, 1996, 379: 266-269.

共引文献71

同被引文献124

  • 1龙勉.细胞-分子生物力学:力学-生物学、力学-化学耦合[J].医用生物力学,2007,22(1):1-3. 被引量:5
  • 2Liu B, Qu M J, Qin KR, et al. Role of cyclic strain frequen- cy in regulating the alignment of vascular smooth muscle cells in vitro [J]. Biophys J, 2008, 94(4) :1497-1507.
  • 3Kong D, Ji B, Dai L. Stability of adhesion clusters and cell reorientation under lateral cyclic tension [ J]. Biophys J, 2008, 95(8) :4034-4044.
  • 4Kong D, Ji BH, Dai LH. Stabilizing to disruptive transition of focal adhesion response to mechanical forces [ J ]. J Si- omech, 2010, 43 (13) :2524-2529.
  • 5Qian J, Wang J, Gao H. Lifetime and strength of adhesive molecular bond clusters between elastic media [ J ]. Lang- muir, 2008, 24(4) :1262-1270.
  • 6Kasza KE, Rowat AC, Liu J, et al. The cell as a material [J]. Curr Opin Cell Biol, 2007, 19(1) :101-107.
  • 7Gardel ML, Shin JH, MacKintosh FC, et al. Elastic behav- ior of cross-linked and bundled actin networks [ J ]. Sci- ence, 2004, 304(5675).1301-1305.
  • 8Jiang GY, Huang AH, Cai YF, Tanase M, Sheetz MP. Ri- gidity sensing at the leading edge through alpha (v)beta (3) Integrins and RPTP alpha [J]. Biophys J, 2006, 90 (5) : 1804-1809.
  • 9McGarry JP, Murphy BP, McHugh PE. Computational me- chanics modelling of cell - substrate contact during cyclic substrate deformation [ J ]. J Mech Phys Solid, 2005, 53 : 2597-2637.
  • 10Chen S, Gao H. Non-slipping adhesive contact of an elas- tic cylinder on stretched substrates [ J ]. Proc Roy Soc A, 2006, 462 (2065) :211-228.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部