期刊文献+

人工髋关节润滑系统的流固耦合分析 被引量:2

Fluid-structure interaction analysis on lubrication system of artificial hip joint
下载PDF
导出
摘要 目的在人工髋关节润滑系统研究中,对基于计算流体动力学和流固耦合技术的方法与传统的雷诺方程法进行比较。方法以金属对金属的全置换髋关节系统为研究对象,使用商业软件Adina作为计算平台,分别建立刚性和弹性流体动力学模型。结果使用基于计算流体动力学和流固耦合技术得到的润滑膜厚度曲线,中部有比较明显的凹陷现象,相较于传统的雷诺方程法得到的结果更为合理;人工髋关节系统的髋臼杯和股骨头的流固耦合表面在所施加的载荷的作用下发生了明显的弹性变形,且该变形和流体域中的压力分布相一致。结论使用基于计算流体动力学和流固耦合技术的方法计算人工髋关节系统的流体动力润滑性能比传统的雷诺方程法更为全面合理。 Objective To compare the method based on computational fluid dynamics(CFD) and fluid-structure interaction(FSI) with the traditional Reynolds equation method in the study of an artificial hip joint lubrication system.Methods Using business software Adina as a computing platform,the metal-on-metal total hip replacement(MOM THR) model was developed as the subject to establish the rigid and elastic CFD model,respectively.Results The film-thickness curve obtained by the CFDFSI method had a significant depression in the center,which was more reasonable than that obtained by the traditional Reynolds equation method.The model with elastic surface under the given load showed a significant deformation at the FSI surface of the acetabular cup femoral head,and the deformation was consistent with the pressure and film-thickness distribution in fluid field.Conclusions The CFDFSI method used here was more reasonable than the traditional method when computing the elasto-hydrodynamic lubrication of an artificial hip joint system.
出处 《医用生物力学》 EI CAS CSCD 2011年第3期240-246,共7页 Journal of Medical Biomechanics
基金 国家重点基础研究发展计划(973计划)资助项目(2009CB724404) 国家高技术研究发展计划(863计划)资助项目(2008AA042508)
关键词 人工髋关节 弹流润滑 流固耦合 弹性变形 计算流体动力学 Artificial hip joint Elasto-hydrodynamic lubrication Fluid-structure interaction(FSI) Elastic deformation Computational fluid dynamics(CFD)
  • 相关文献

参考文献15

  • 1魏鸿文,朱婉儿,高鸿展,洪诗婷,郑诚功,苏荣源.全人工髋关节超高分子量聚乙烯髋臼杯组件取出物之磨耗分析[J].医用生物力学,2007,22(4):328-333. 被引量:2
  • 2王友.人工髋关节松动的机械学因素[J].医用生物力学,1998,13(1):45-49. 被引量:4
  • 3Ai X, Cheng H. Hydrodynamic lubrication analysis of me- tallic hip joint [J]. Tribol Trans, 1996, 39(1) : 103-111.
  • 4Jin ZM, Dowson D. A full numerical analysis of hydrody- namic lubrication in artificial hip joint replacements construc- ted from hard materials [J]. Proc IMechE, Part C: J Mech Eng Sci, 1999, 213(4) : 355-370.
  • 5Jagatia M, Jin ZM. Elastohydrodynamic lubrication analysis of metal-on-metal hip prostheses under steady state entrai- ning motion [ J ]. Proc Inst Mech Eng H, 2001, 215 (6) : 531-541.
  • 6Almqvist T, Larsson R. Thermal transient rough EHL line contact simulations by aid of computational fluid dynamics [ J]. Tribol Int, 2008, 41 (8): 683-693.
  • 7Gertzos KP, Nikolakopoulos PG, Papadopoulos CA. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant [J]. Tribol Int, 2008, 41 (12): 1190- 1204.
  • 8Hong YP, Chen DR, Kong XM, et al, Model of fluid-struc- ture interaction and its application to elastohydrodynamic lu- brication [J]. Comput Methods App Mech Eng, 2002, 191 (37-38): 4231-4240.
  • 9Meruane V, Pascual R, Identification of nonlinear dynamic coefficients in plain journal bearings [ J ]. Tribol Int, 2008, 41 (8) : 743-754.
  • 10Liu HP, Xu H, Ellison P J, et al. Application of computa- tional fluid dynamics and fluid-Structure interaction method to the lubrication study of a rotor-bearing system [ J ]. Trib Lett, 2010, 38: 325-336.

二级参考文献37

  • 1Noble PC.The design of cementless femoral prostheses in Orthopaedic Knowledge update: Hip and Knee Reconstruction(eds Callaghan JJ, Dennis DA, Paprosky WG, Rosenberg AG) 6300 North River Road, Rosemont, AAOS, 1995: 127.
  • 2Soballe K, Hansen ES, Brockstedt-Rasmussen H, et al. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions.J Orthop Res 1992, 10: 265.
  • 3Soballe K,Hansen ES, Brockstedt-Rasmussen H, et al. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone J Surg 1993; 75B: 270-278.
  • 4Pilliar RM, Lee JM, Maniatopoulos C. Observation on the effect of movement on bone ingrowth into porous surfaced implants. Clin Orthop 1986; 208: 108-113.
  • 5Hollis JM, Hofmann E, Stewart EL, et al. Effect of micromotion on ingrowth into porous coated implants using a transcortical model. Transactions of the 38th Annual Meeting of the Orthopaedic Research Society, 1992; 564.
  • 6Goodman SB. The effects of micromotion and particulate materials on tissue differentiation.Acta Orthop Scand(Suppl 258), 1994; 65: 2-3.
  • 7Noble PC. Biomechanical advances in total hip replacement in Biomechanics in orthopaedics (eds Niwa S,Perren SM, Hattori T)Tokyo Japan Springer-verlag, 1992: 46-75.
  • 8Sugiyama H, Whiteside LA, Engh A. Torsional fixation of the femoral component in total hip replacement: the effect of the surgical technique. Transactions of the 36th Annual Meeting of the Orthopaedic Research Society 1990; 258.
  • 9Curtis MJ, Jinnah RH, Wilson VD, et al. The initial stability of uncemented acetabular components. J Bone J Surg 1992; 72B: 372-376.
  • 10Harris WH. The problem is osteolysis. Clin Orthop 1995; 311: 46-53.

共引文献4

同被引文献70

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部