期刊文献+

基于混合高斯密度HMM的轴承故障诊断技术研究

Faults Diagnosis for Bearing Based on HMMs with Gaussian Mixtures
下载PDF
导出
摘要 从轴承正常和故障条件下的实际机械系统中测试的振动信号入手,利用LPC系数进行特征提取,并把提取的特征矢量用于建立HMM隐状态下的高斯概率混合器模型,以便于引入到HMM的训练中,形成一个新的HMM类型-混合高斯密度HMM(GMD-HMM)。通过选取输出最高概率的HMM进行各种轴承故障类型的决策。通过异步电机系统的驱动端轴承的测试信号验证了该故障诊断方法的精确性。 Feature vectors based on the coefficients of LPC filters extracted from vibrations signals from both normal and faulty bearings were used to model Gaussian mixtures to represent observation probability densities of HMMs. So HMMs of various bearing conditions were trained. The method allows for diagnosis of the type of bearing fault by selecting the HMM with the highest probability. The method was tested with experimental data collected from an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor mechanical system and has proven to be very accurate.
出处 《汽轮机技术》 北大核心 2011年第3期205-208,共4页 Turbine Technology
基金 国家自然科学基金支持项目(编号:50405023)
关键词 振动信号 HMM 高斯混合模型 故障诊断 vibration signal HMM Gaussian mixtures faults diagnosis
  • 相关文献

参考文献4

  • 1Adams,M.L.Analysis of Rolling Element Bearing Faults in Rotating Machinery:Experiments,Modeling,Faults Detection,Diagnosis[D].Case Western Reserve University,2001.
  • 2Kee-Choon Kwona,Jin-Hyung Kim.Accident Identification inNuclear Power Plants Using Hidden Markov Models[J].Engineering Applications of Artificial Intelligence,1999,12:491 -501.
  • 3Hasan Ocak,Kenneth A.Loparo.HMM-Based Fault Detection and Diagnosis Scheme for Rolling Element Bearings[J].Journal of Vibration and Acoustics,2005,127:299-306.
  • 4丁启全,冯长建,李志农,吴昭同.旋转机械启动全过程DHMM故障诊断方法研究[J].振动工程学报,2003,16(1):41-45. 被引量:25

二级参考文献3

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部