期刊文献+

锂离子电池负极材料用针状焦的石墨化机理及其储锂行为 被引量:22

Graphitization Mechanisms and Electrochemical Performance of Needle Coke Anode for Li-ion Battery
下载PDF
导出
摘要 通过考察煤系针状焦在700~2800℃热处理过程中石墨微晶结构的变化规律及其电化学性能,并结合TG-DTG、XRD、SEM、XPS表征方法以及充放电、循环伏安曲线特征,分析了针状焦的石墨化机理及其储锂机制.研究结果表明,随热处理温度的升高,针状焦的类石墨微晶在不断长大的同时,还存在微晶在径/轴向的排列、石墨层间位错线的消失、晶界间C-C六圆环的形成、晶界的消失以及石墨层"褶皱"的平面化等复杂过程,且每个过程的驱动力不同.针状焦经过2800℃石墨化后,可获得较低的Li+充放电电位和稳定的充放电平台,且反复充放电40次后的有效嵌锂容量为305mAh/g. Effects of heat-treatment temperature on the microstructure and electrochemical properties of coal based nee-dle coke were investigated by TG-DTG,XRD,SEM,XPS analysis and the charge/discharge,cyclic voltammetry curves.The graphitization mechanism of needle coke is suggested as well as the Li+ extraction-insertion behaviors.With the heat-treatment temperature increasing,the graphite-like crystal grows continuously attended with a complicated process,including the arrangement of crystal along radial/axial direction,dislocation dispersion among graphite layers,hexagonal carbon formation,crystal edge dispersion and folded graphite layer turning to plane.Meanwhile,the driving-forces are far different for different process.When needle coke is graphitized at 2800℃,it exhibits a lower charge/discharge potential and stable charge/discharge platform,and the insertion capacitance of Li+ can maintain at 305mAh/g even after charge/discharged for 40 cycles.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2011年第6期619-624,共6页 Journal of Inorganic Materials
基金 国家863重点项目(2008AA062302) 国家自然科学基金(20806024 50672025 5073003 51002051) 中央高校基本科研业务费专项基金(WA1014016)~~
关键词 针状焦 负极材料 锂离子电池 石墨化 needle coke anode material lithium ion battery graphitization
  • 相关文献

参考文献13

  • 1Du N, Zhang H, Chen B D, et al. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube template: a highly efficient material for Li battery applications. Advanced Materials, 2007, 19(24): 4505--4509.
  • 2Zuo P J, Yin G P, Yang Z L, et al. Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Materials Chemistry and Physics, 2009, 115(2/3): 757-760.
  • 3Chan C K, Ruffo R, Hong S S, et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources, 2009, 189(2): 1132-1140.
  • 4Concheso A, Santamaria R, Menendez R. Iron-carbon composites as electrode materials in lithium batteries. Carbon, 2006, 44(9): 1762-1772.
  • 5Lee S, Yoon S, Park C M, et al. Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries. Electrochimica Acta, 2008, 54(1): 364-369.
  • 6Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica Acta, 2006, 51(11): 1636-1640.
  • 7Wang G X, Yao J, Liu H K. Characterization of nanocrystalline Si-MCMB composite anode materials. Electrochem Solid-state Lett., 2004, 7(8): 250-253.
  • 8Ohta N, Nagaoka K, Hoshi K, et al. Carbon-coated graphite for anode of lithium ion rechargeable batteries:Graphite substrates for carbon coating. Journal of Power Sources, 2009, 194(2): 985-990.
  • 9Kang H G, Park J K, Hart B S, et al. Electrochemical characteristics of needle coke refined by molten caustic leaching as an anode material for a lithium-ion battery. Journal of Power Sources, 2006, 153(1): 170--173.
  • 10Park C W, Yoon S H, Oh S M, et al. An EVS (electrochemical voltage spectroscopy) study for the comparison of graphitization behaviors of two petxoleum needle cokes. Carbon, 2000, 38(9): 1261-1269.

同被引文献213

引证文献22

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部