摘要
研究了原子核平均场中本征能量的求解.当不存在任何几何对称性时,能量矩阵由2 N×2 N个复数矩阵元组成( N 为基矢的大小);如果空间存在1 个反射对称平面,该2 N×2 N复矩阵可约化为1 对互为共轭N×N复矩阵或1 个2N×2N实矩阵;如果存在2 个互相正交对称平面,则可约化为2 个N×N实矩阵.
The solutions to the eigen energy problem in nuclear mean field are investigated. If there is no geometry symmetries in the coordinate space, the energy matrix is composed of 2 N×2N complex matrix elements( N is the size of the basis employed). If there exists one reflection symmetrical plane, this 2N×2N complex matrix can be reduced to a pair of conjugate N×N complex matrices or one 2N×2N real matrix. And if there are two perpendicular reflection planes, it can be further reduced to two N×N real matrices.
出处
《中南工业大学学报》
CSCD
北大核心
1999年第6期645-648,共4页
Journal of Central South University of Technology(Natural Science)
基金
国家自然科学基金