期刊文献+

■_2类微分形式的Caccioppoli不等式及其应用 被引量:2

CACCIOPPOLI INEQUALITY FOR ■_2-DIFFERENTIAL FORMS AND ITS APPLICATIONS
下载PDF
导出
摘要 本文研究了■2类微分形式的问题.利用微分形式技巧,得到其Caccioppoli不等式.作为应用,得到拟正则映射的Caccioppoli不等式及高阶可积性,推广了T.Iwaniec等人的结果. The definition of WT2-differential forms is given. By using the technique of differential forms, the Caccioppoli inequality is obtained. As applications, the Caccioppoli inequality and higher integrability results for quasiregular mappings are derived and some results due to T. Iwaniec et al. are generalized.
作者 高红亚 时坚
出处 《数学杂志》 CSCD 北大核心 2011年第4期695-698,共4页 Journal of Mathematics
基金 国家自然科学基金(10971224) 河北省自然科学基金数学研究专项(07M003)资助
关键词 ■2类微分形式 Caccioppoli不等式 拟正则映射 WT2-differential forms Caccioppoli inequality quasiregular mapping.
  • 相关文献

参考文献5

  • 1Franke D, Martio O, Miklyukov V M, Vuorinen M, Wisk R. Quasiregular mappings and WT-classes of differential forms On Riemannian manifolds[J]. Pacific Journal of Mathematics, 2002, 202(1): 73 92.
  • 2Martio O, Miklyukov V, Vuorinen M. Removable singularities of WT-differential forms and quasireg- ular mappings[J]. Boundary Value Problems, 2007, (2007): 1-9.
  • 3Iwaniec T, Martin G. Geometric function theory and non-linear analysis[M]. Oxford: Clarendon Press, 2001.
  • 4Gao H Y, Chen Y Z. Caccioppoli type inequalities for weak solutions of A-harmonic equation and its applications[J]. Kyungpook Math. J., 2004, 44: 363-368.
  • 5Iwaniec T. p-harmonic tensors and quasiregular mappings[J]. Annals of Math., 1992, 136:589 624.

同被引文献9

  • 1Axler S, Bourdon P, Ramey W. Harmonic function theory[M]. Berlin: Springer-Verlag, 1992.
  • 2Levin B Y. Lectures on entire functions [M]. Translations of Math. Monographs, Vol.150. ProvidenceRI: Amer. Math. Soc., 1996.
  • 3Pan G S. Growth estimates and integral representations of harmonic and subharmonic functions[D].Beijing: Beijing Normal University, 2009.
  • 4Shimomura T. Growth properties of hyperplane integrals of Sobolev functions in a half space[J].Osaka J. Math., 2001, 38: 759-773.
  • 5Siegel D. Sharp growth estimates for modified Poisson integrals in a half space[Jj. Potential Analysis,2001, 15: 333-360.
  • 6Mizuta Y, Shimomura T. Growth properties for modified Poisson integrals in a half space [J]. PacificJournal of Mathematics, 2003, 212(2): 333-346.
  • 7Talvila E O. Growth estimates and Phragmen-Lindelof principles for half space problems [D]. Thesisof University of Waterloo, 1997.
  • 8张艳慧,邓冠铁.半空间中一类次调和函数的增长性质[J].数学学报(中文版),2008,51(2):319-326. 被引量:11
  • 9乔蕾,邓冠铁,潘国双.上半空间中修改的Poisson积分和Green位势的例外集[J].中国科学:数学,2010,40(8):787-800. 被引量:4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部