期刊文献+

完全二部图的邻接谱(英文)

Adjacent spectral characterization of complete bipartite graphs
下载PDF
导出
摘要 给出了完全二部图邻接谱的刻画:若m,n是两个正整数,则完全二部图K_(m,n)由它的邻接谱决定当且仅当m,n是素数,或n是素数且m的每个真因子不大于n,或m,n是合数且使得对任意的满足m′n′=mn的m′,n′,m′+n′≥m+n. The adjacent spectral characterization of complete bipartite graphs was given in this paper: Let m, n be two positive integers. Then the complete bipartite graphs Km, n are determined by their adjacency spectrum if and only if any one of the following conditions holds: m, n are prime; n is a prime and every proper divisor of m not greater than n; m, n are composite numbers such that m' + n'≥ m + n for any integers rn' and n' with m'n'= ran.
作者 杨东 王井玉
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期77-80,共4页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by the National Natural Science Foundation of China(10971086)
关键词 同谱图 二部图 特征值 spectrum cospectral graph bipartite graph eigenvalue
  • 相关文献

参考文献9

  • 1GUNTHARD H H, PRIMAS H. Zusammenhang von graphentheorie und MO-theorie von molekeln mit systemen konjugierter bindungen[J]. Helv Chim Ac- ta, 1956, 39(6): 1645-1653.
  • 2VON DAM E R, HAEMERS W H. Which graphs are determined by their spectrum?[J]. Linear Algebra Appl, 2003, 373: 241-272.
  • 3VON DAM E R, HAEMERS W H. Developments on spectrum characterizations of graphs{J]. Discrete Math, 2009, 309(3): 576-586.
  • 4GHAREGttAI N, OMIDI G R, TAYFEH R B. Spec- tral characterization of graphs with index at mostV2 + V5[J]. Linear Algebra and Its Applications, 2007, 420(2/3): 483-489.
  • 5SHEN Xiao-ling, Hou Yao-ping, ZHANG Yuan-ping. Graph Zn and some graphs related to Zn are deter- mined by their spectrum[J]. Linear Algebra Appl, 2005, 404: 58-68.
  • 6WANG Wei, Xu Cheng-xian. On the spectral char- acterization of T-shape trees[J]. Linear Algebra and Its Applications, 2006, 414(2/3): 492-501.
  • 7WANG Wei, Xu Cheng-xian. Note: the T-shape tree is determined by its Laplacian spectrum[J]. Linear Algebra and Its Applications, 2006, 419(1): 78-81.
  • 8HAEMEIS W H, LIu Xiao-gang, ZHANG Yuan-ping. Spectral characterizations of lollipop graphs[J]. Lin- ear Algebra and Its Applications, 2008, 428(11/12): 2 415-2 423.
  • 9LIu Bo-lian. Combinatorial matrix theory[M]. Bei- jing: Science Press, 1996.(In Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部