期刊文献+

利用In_(0.82)Ga_(0.18)As与InP衬底之间的应力制作结构材料的缓冲层 被引量:1

Preparation of Buffer by The Stress Between In_(0.82)Ga_(0.18)As Layer and InP Substrate
下载PDF
导出
摘要 采用低压金属有机化学气相淀积(LP-MOCVD)技术,在InP(100)衬底上生长In0.82Ga0.18As,研究生长温度对In0.82Ga0.18As材料表面形貌、结晶质量和电学性能的影响。利用InP(100)衬底与In0.82Ga0.18As材料晶格失配所产生的应变,在不同的生长温度下应变释放程度不同,进而在In0.82Ga0.18As表面形成不同类型的缓冲层。分析不同的缓冲层对外延层In0.82Ga0.18As的影响,从而优化出最佳的生长温度。 In0.82Ga0.18As layers were grown on semi-insulating Fe-doped InP(100) substrates by low pressure metalorganic chemical vapor deposition(LP-MOCVD).The growth was performed using TMIn,TMGa,and AsH3 as growth precursors of In,Ga,and As,respectively,in a horizontal reactor.The substrate on a graphite susceptor was heated by inductively coupling radio frequency power,the growth temperature was detected by a thermocouple,and the reactor pressure was kept at 1×104 Pa.Thickness of In0.82Ga0.18As layer for all samples was kept to be 300 nm.In our experiments,the growth temperature of In0.82Ga0.18As layers was 390,410,430,450,470,530 ℃,respectively.Because the strain caused by the lattice mismatch between In0.82-Ga0.18As layer and InP substrate was varied from the growth temperature,the surface of In0.82Ga0.18As layer was different.It was analyzed that the growth temperature of In0.82Ga0.18As layer influenced on the surface morphology,crystalline quality and the electrical property of the In0.82Ga0.18As layer.The surface morphology of In0.82Ga0.18As layer was studied by the scanning electron microscopy(SEM).The components and crystalline quality of In0.82Ga0.18As layer were characterized by X-ray diffraction(XRD).The electrical property of In0.82Ga0.18As layer was measured using the Hall Effect.This work shows a useful way how to design for the optimum buffer in growthing highly mismatched epitaxy layers.
出处 《发光学报》 EI CAS CSCD 北大核心 2011年第6期612-616,共5页 Chinese Journal of Luminescence
基金 海南省教育厅高等学校科研项目基金(Hjkj2010-21) 国家自然科学基金重点项目(50632060) 国家自然科学基金面上项目(50972141) 海南省自然科学基金(609002) 海南师范大学学科建设基金(0020303020317 HS-2-2011-070205)资助项目
关键词 In0.82Ga0.18As 金属有机化学气相淀积 缓冲层 In0.82Ga0.18As MOCVD buffer
  • 相关文献

参考文献11

  • 1Nagai H, Noguehi Y, Crack formation in InP-GaxInI _xAs-lnP double heterostructure fabrication [ J ]. Appl. Phys. Lett. , 1976, 29(11 ) :740-741.
  • 2Bandy S, Nishimoto C, Hyder S, et al. Saturation velocity determination for lno 53 Gao.47 As field-effect transistors [ J ]. Ap- pl. Phys. Lea. , 1981, 38(10) :817-819.
  • 3Murray S L, Newman F D, Murray C S, et al. MOCVD growth of lattice matched and mismatched InGaAs materials for thermophotovoltaic energy conversion [ J]. Semicond. Sci. Technol. , 2003, 18(5) :s202-s208.
  • 4Bachmann K J, Shay J L, An InGaAs detector for the 1.0-1.7-1xm wavelength range [J]. Appl. Phys. Lett. , 1978, 32 (7) :446-448.
  • 5Ducommun Y, Kroutvar M, Finley J J, et al. Dynamics of optically stored charges in InGaAs quantum dots [ J]. Physica E, 2004, 21(2-4) :886-891.
  • 6Hoogeveen R W M, van der A R J, Goede A P H. Extended wavelength InGaAs infrared (1.0 -2.4um) detector arrays on SCIAMACHY for space based spectrometry of the earth atmosphere [J]. Infrared Phys. Techn. , 2001, 42( 1 ) :1-16.
  • 7Mathews J W, Mader S, Light T B. Accommodation of misfit across the interface between crystals of semiconducting elements or compounds [J]. J. Appl. Phys. , i[970, 41(9) :3800-3805.
  • 8Fitzgerald E A, Watson G P, Proano R E, et al. Nucleation mechanisms and the elimination of misfit dislocations at mismatched interfaces by reduction in growth area [J]. J. Appl. Phys. , 1989, 65(6) :2220-2237.
  • 9Guha S, Madhukar A, Chen Li, Defect reduction in strained InxGa1-x As via growth on GaAs(100) substrates patterned to submicron dimensions [J]. Appl. Phys. Lett. , 1990, 56(23) :2304-2306.
  • 10张铁民,缪国庆,宋航,蒋红,李志明,傅军,颜丽娜.缓冲层生长温度对In_(0.82)Ga_(0.18)As薄膜结构及电学性能的影响(英文)[J].发光学报,2009,30(6):787-791. 被引量:3

二级参考文献18

  • 1Hoogeveen Ruud W M, Van der A Ronald J, Goede Albert P H. Extended wavelength InGaAs infrared ( 1.0 - 2.4 μm) detector arrays on SCIAMACHY for spaee-based speetrometry of the Earth atmosphere [J]. Infrared Phys. Teehn. , 2001, 42(1) :1-16.
  • 2Nagai H, Noguchi Y. Crack formation in InP-GaxIn1-xAs-InP double heterostructure fabrication [ J]. Appl. Phys. Lett. , 1976, 29( 11 ) :740-741.
  • 3Bandy S, Nishimoto C, Hyder S, et al. Saturation velocity determination for In0.53 Ga0.47 As field-effect transistors [ J]. Appl. Phys. Lett. , 1981, 38(10):817-819.
  • 4Murray S L, Newman F D, Murray C S, et al. MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion [ J ]. Semicond. Sci. Technol. , 2003, 18 (5) : s202-s208.
  • 5Bachmann K J, Shay J L. An InGaAs detector for the 1.0 - 1.7 μm wavelength range [J]. Appl. Phys. Lett. , 1978, 32 (7) :446-448.
  • 6Durel S, Caulet J, Gauneau M, et al. High quality lattice mismatched InGaAs layer grown on InP [ C ]. Second International Conference on Indium Phosphide and Related Materials, New York: IEEE, 1990, 139-143.
  • 7Chai Y G, Chow R. Molecular beam epitaxial growth of lattice-mismatched In0.77Ga0.23As on InP [J]. J. Appl. Phys., 1982, 53(2) :1229-1232.
  • 8Wada M, Hosomatsu H. Wide wavelength and low dark current lattice-mismatched InGaAs/InAsP photodiodes grown by metalorganic vapor-phase epitaxy [J]. Appl. Phys. Lett. , 1994, 64(10) :1265-1267.
  • 9Ko H J, Chen Y F, Ko J M, et al. Two-step MBE growth of ZnO layers on electron beam exposed ( 111 ) CaF2 [ J ]. J. Crysr Growth, 1999, 207(1-2) :87-94.
  • 10Chen H, Guo L W, Cui Q, et al. Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular-beam epitaxy [J]. J. Appl. Phys. , 1996, 79(2) :1167-1169.

共引文献2

同被引文献12

  • 1温培刚,颜悦,张官理,望咏林.磁控溅射沉积工艺条件对薄膜厚度均匀性的影响[J].航空材料学报,2007,27(3):66-68. 被引量:22
  • 2Tsai C L, Liao A, Pop E, et al. Electrical power dissipation in semiconducting carbon nanotubes on single ctystal quartz and amorphous SiO2 [J]. Appl. Phys. Lett. , 2011, 99(5) :053120-1-3.
  • 3Hulko O, Thompson D A, Simmons J G. Quantitative compositional profiles of enhanced intermixing in GaAs/A1GaAs quantum well heterostructures annealed with and without a SiO2 caplayer [ J ]. Semieond. Sci. Technol. , 2009, 24 (4) : 045015-1-6.
  • 4Gignac L M, Pan'ill T M, Chandrashekhar G V. Porous SiO2 films analyzed by transmission electron microscopy [ J ]. Thin Solid Films, 1995, 261 (1-2) :59-63.
  • 5Alias M S, Shaari S, Mitani S. Optimization of electro-optical characteristics of GaAs-based oxide confinement VCSEL [J]. Laser Phys. , 2010, 20(4) :806-810.
  • 6Alias M S, Shaari S, Choudhury P K, et al. Improved efficiency of GaAs-based VCSEL by utilizing fan-pad metallization and trench patterning [ J]. Ixtser Phys. , 2009, 19( 11) :2096-2101.
  • 7Hecht J. VCSELS: Vertical cavity lasers reach higher speeds and powers [J]. Laser Focus World, 2011, 47(6) :37-37.
  • 8Higuchi A, Naito H, Torii K, et al. High power density vertical-cavity surface-emitting lasers with ion implanted isolated current aperture [J]. Opt. Exp. , 2012, 20(4) :4206-4212.
  • 9Zhang L S, Ning Y Q, Zeng Y G, et al. High-power bottom-emitting vertical-cavity surface-emitting lasers under continuous-wave, quasi-continuous-wave, and pulsed operation [J]. Appl. Phys. Exp., 2011, 4(5) :052102-1-3.
  • 10Yang C C, Witt C, Wang P C, et al. Stress control during thermal annealing of copper interconnects [ J ]. Appl. Phys. Lett., 2011,98(5) :051911-1-3.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部