期刊文献+

基于独立分量分析的切削声发射源信号分离 被引量:4

Source Separation of Cutting AE Signal Based on ICA
下载PDF
导出
摘要 针对切削声发射(Acoustic Emission,AE)信号的多目标状态源并行分离问题和同频干扰源分离问题,引入独立分量分析(Independent Component Analysis,ICA)技术作为研究工具,用刀具破损、切屑折断和环境噪声三个AE源的线性混合模拟切削AE信号,尝试用Fast ICA算法分离目标状态源。结果表明:实现了各目标状态源的并行分离,相对误差小于10%;目标状态源的同频干扰不影响基于独立性的ICA分离。最后,针对分离结果的鉴别排序问题进行了初步探讨。 The Independent Component Analysis (ICA) technique was introduced as a tool for simultaneously separating from cutting Acoustic Emission (AE) signal multi condition sources with common frequency band. Cutting AE signals were simulated by linearly combining AE sources of tool breakage, chip fracture and environmental noise. It was attempted to separate condition sources with Fast ICA algorithm. The results show that ICA is capable of estimating multi condition sources with errors less than 10%, and that the problem of common frequency band does not affect ICA solvability. Finally, further investigation was made with regard to identification of separated sources.
出处 《工具技术》 2011年第6期35-39,共5页 Tool Engineering
基金 国家自然科学基金资助项目(51075276)
关键词 声发射 切削过程监测 独立分量分析 Acoustic Emission (AE) cutting process monitoring Independent Component Analysis (ICA)
  • 相关文献

参考文献10

  • 1Inasaki I. Application of acoustic emission sensor for monitoring machining processes [ J ]. Ultrasonics, 1998, 36 ( 1 - 5 ) : 273 - 281.
  • 2Menon S, et al. Wavelet-based acoustic emission detection method with adaptive thresholding [ J ]. Proceedings of SPIE - The International Society for Optical Engineering, 2000, 3986: 71 - 77.
  • 3Tansel I, et al. Micro-end-milling(III): wear estimation and tool breakagedetection using acoustic emission signals[J]. Inter- national Journal of Machine Tools and Manufacture, 1998, 38 (12) : 1449 - 1466.
  • 4杨福声,洪波.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.
  • 5Zhu K, et al. Cutting force denoising in micro- milling tool condition monitoring[J]. International Journal of Production Re- search, 2008, 46(16): 4391-4408.
  • 6Cardoso J F, A Souloumiac. Blind beamforming for non- Gaus-sian signals[J]. IEE Proceedings, Part F: Radar and Signal Processing, 1993, 140(6) : 362- 370.
  • 7Bell A J, T J Sejnowski. An information-maximization approach to blind separation and blind deconvolution[ J ]. Neural Compu- tation, 1995, 7(6) : 1129 - 1159.
  • 8Hyvarinen A, E Oja. Independent component analysis: Algo- rithms and applications[J]. Neural Networks, 2000, 13(4- 5) : 411 - 430.
  • 9Cichocki S, Amari K, Siwek T, et al. ICALAB Toolboxes, http ://www. bsp. brain, riken, jp/ICALAB.
  • 10耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28. 被引量:163

二级参考文献5

共引文献162

同被引文献57

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部