期刊文献+

基于半监督线性近邻传递的相关反馈方法 被引量:2

Relevance Feedback Algorithm Based on Semi-supervised Linear Neighborhood Propagation
下载PDF
导出
摘要 提出了一种半监督线性近邻传递的相关反馈方法FSLNP(feedback semi-supervised linear neighborhood propagation).该算法不仅能够保持正、负例约束信息,而且能够保持图的局部以及全局相关性结构信息.采用相关反馈的有标签和未知标签图像点,找到比较好的表示图像相关性的一个图结构,来揭示图像点的语义间结构关系.实验结果表明:该算法可以提高检索的准确度,而且在经过长期学习后可以获得一个优化相关性的图结构. A feedback semi-supervised linear neighborhood propagation method(FSLNP) is proposed.FSLNP method can not only preserve the positive and negative constraints but also preserve the local and global relevance structure information of the whole graph.With both labeled and unlabeled images in relevance feedbacks,a better structure for relevance representation among images is found to reveal the semantic structure.Experimental results show that FSLNP can effectively improve retrieval accuracy,and after long term learning,an optimal relevance graph space can be obtained.
作者 黄传波 金忠
出处 《信息与控制》 CSCD 北大核心 2011年第3期289-295,共7页 Information and Control
基金 国家自然科学基金资助项目(60873151 60973098 90820306)
关键词 相关反馈 半监督学习 图像检索 线性近邻传递 relevance feedback semi-supervised learning image retrieval linear neighborhood propagation
  • 相关文献

参考文献21

  • 1Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380.
  • 2Zhou X S, Huang T S. Relevance feedback in image retrieval: A comprehensive review[J]. Multimedia Systems, 2003, 8(6): 536-544.
  • 3Chapelle O, Scholkopf B, Zien A. Semi-supervised learn- ing[M]. Cambrige,/VIA, USA: MIT Press, 2006.
  • 4Wu Y, Tian Q, Huang T. Discriminant-EM algorithm with appli- cation to image retrieval[C]//Proceedings of the IEEE Confer- ence on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2000: 222-227.
  • 5Sia K C, King I. Relevance feedback based on parameter estima- tion of target distribution[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 2002: 1974-1979.
  • 6鲁珂,赵继东,叶娅兰,曾家智.一种用于图像检索的新型半监督学习算法[J].电子科技大学学报,2005,34(5):669-671. 被引量:9
  • 7Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Annual ACM Conference on Computational Learning Theory. New York, NJ, USA: ACM, 1998: 92-100.
  • 8Zhou Z H, Li M. Tri-training: Exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
  • 9El-Yaniv R, Pechyony D, Vapnik V. Large margin vs. large volume in transductive learning[J]. Machine Learning, 2008, 72(3):173-188.
  • 10薛贞霞,刘三阳,刘万里.基于SVDD的渐进直推式支持向量机学习算法[J].模式识别与人工智能,2008,21(6):721-727. 被引量:9

二级参考文献25

  • 1赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 2廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 3沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 4Vapnik V N. Statistical Learning Theory. New York, USA : Wiley, 1998
  • 5Bennett K, Demiriz A. Semi-Supervised Support Vector Machines //Kearns M S, Solla S A, Cohn D A, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 1999, 11 : 368 - 374
  • 6Chapelle O, Vapnik V, Weston J. Transductive Inference for Estimating Values of Functions// Kearns M S, Solla S A, Cohn D A, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1999, 11:421-427
  • 7Joachims T. Transductive Inference for Text Classification Using Support Vector Machines// Proc of the 16th International Conference on Machine Learning. Bled, Slovenia, 1999 : 200 - 209
  • 8Chen Yisong, Wang Guoping, Dong Shihai. Learning with Progressive Transductive Support Vector Machines. Pattern Recognition Letters, 2003, 24(12) : 1845 - 1855
  • 9Tax D M J, Duin R P W. Support Vector Domain Description . Pattern Recognition Letters, 1999, 20 ( 11 / 12/13 ) : 1191 - 1199
  • 10Ding Ailing, Liu Fang, Li Ying. Pre-Extracting Support Vector by Adaptive Projective Algorithm//Proc of the 6th International Conference on Signal Proceedings. Beijing, China, 2002, Ⅰ: 21 -24

共引文献46

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部