期刊文献+

基于学习分类器的自主地面车在狭隘环境中的路径规划

Autonomous Land Vehicle Path Planning Based on Learning Classifier System in Narrow Environments
下载PDF
导出
摘要 提出了一种基于学习分类器(LCS)的避碰路径规划方法,设计了集成适应度函数,在确保安全避碰的前提下,解决自主地面车(ALV)在狭隘环境下的路径优化问题.不同环境的仿真实验结果表明,遗传算法和学习分类器结合用于自主地面车的路径规划是收敛的,提高了ALV在狭隘环境中快速发现安全路径的能力. A collision avoidance path planning method based on LCS(learning classifier system) is present,and an integrated fitness function to solve ALV's(autonomous land vehicle) path optimization problem is designed in the narrow environment under safe collision avoidance.Different environment simulation results show that ALV's path planning is convergent by combining genetic algorithms and learning classifier system,and ALV's capabilities of quickly finding the secure path in the narrow environments is improved.
出处 《信息与控制》 CSCD 北大核心 2011年第3期413-417,共5页 Information and Control
基金 国家自然科学基金资助项目(60705020)
关键词 路径规划 自主地面车 学习分类器 遗传算法 path planning autonomous land vehicle(ALV) learning classifier system(LCS) genetic algorithm(GA)
  • 相关文献

参考文献11

  • 1李庆中,顾伟康,叶秀清.基于遗传算法的移动机器人动态避障路径规划方法[J].模式识别与人工智能,2002,15(2):161-166. 被引量:37
  • 2孟伟,黄庆成,韩学东,洪炳镕.一种动态未知环境中自主机器人的导航方法[J].计算机研究与发展,2005,42(9):1538-1543. 被引量:5
  • 3Masouri M, Aliyari S M, Teshnehlab M. Integer GA for mobile robot path planning with using another GA as repairing func- tion[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway, NJ, USA: IEEE, 2008: 135-140.
  • 4孟偲,王田苗.一种移动机器人全局最优路径规划算法[J].机器人,2008,30(3):217-222. 被引量:25
  • 5Gao Y, Sun S D. A collision based local path planning of mo- bile robot[C]//Proceedings of the 2009 International Asia Con- ference on Informatics in Control, Automation and Robots. Pis- cataway, NJ,USA: IEEE, 2009: 185-190.
  • 6曲道奎,杜振军,徐殿国,徐方.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101. 被引量:98
  • 7Holland J H. A mathematical flame work for studying learning in classifier systems[M]. New York, USA: ACM, 1976: 307- 317.
  • 8Musilek P, Li S, Wyard-Scott L. Enhanced learning classi- fier system for robot navigation[C]//2005 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Piscat- away, USA: IEEE, 2005: 3390-3395.
  • 9Larry B, Mattew S, Anthony B, et al. Learning classifier system ensembles with rule-sharing[J]. IEEE Transactions on Evolu- tionary Computation, 2007, 11(4): 496-502.
  • 10Baneamoon S M, Salam R A. Applying steady state in genetic algorithm for robot behaviors[C]//2008 International Confer- ence on Electronic Design. Piscataway, NJ, USA: IEEE, 2008: 930-934.

二级参考文献29

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部