期刊文献+

主从式免疫克隆选择算法求解任务分配问题

Solving Task Assignment Problem by Master-slave Immune Clone Selection Algorithm
下载PDF
导出
摘要 基于生物免疫系统的克隆选择机理,提出一种求解任务分配问题(task assignment problem,TAP)的主从式免疫克隆选择算法(MSICSA).该算法采用一种多种群策略,通过迁入和迁出操作,更新种群之间的信息,保持了群体的多样性.实验结果表明,该算法可有效改善基本免疫克隆选择算法解决大规模优化问题上的不足,具有很好的收敛性和稳定性,能有效解决任务分配问题. Based on the clonal selection mechanism of biological immune system,a kind of master-slave immune clone selection algorithm(MSICSA) is introduced to deal with task assignment problem(TAP).The algorithm adopts multi-population strategy.Through the immigration and emigration operation,information among populations is updated and the diversity of population is maintained.Experimental results show that the proposed MSICSA can effectively overcome the shortcomings of the basic immune clonal selection algorithm in solving large-scale optimization problems,has excellent convergence and stability,and can solve the TAP problem effectively.
出处 《信息与控制》 CSCD 北大核心 2011年第3期424-428,共5页 Information and Control
关键词 任务分配问题 克隆选择 免疫克隆选择算法 主从式免疫克隆选择算法 迁入和迁出 task assignment problem clonal selection immune clonal selection algorithm master-slave immune clonal selection algorithm immigration and emigration
  • 相关文献

参考文献11

  • 1Chaudhary V, Aggarwal J K. A generalized scheme for map- ping parallel algorithms[J]. IEEE Transactions on Parallel and Distributed Systems, 1993, 4(3): 328-346.
  • 2Kafil M, Ahmad I. Optimal task assignment in heterogeneous distributed computing systems[J]. IEEE Concurrency, 1998, 6(3): 42-51.
  • 3Kaya K, Ucar B, Aykanat C. Heuristics for scheduling file- sharing tasks on heterogeneous systems with distributed repos- itories[J]. Journal of Parallel and Distributed Computing, 2007, 67(3): 271-285.
  • 4Lee C H, Shin K G. Optimal task assignment in homogeneous networks[J]. IEEE Transactions on Parallel and Distributed Sys- tems, 1997, 8(2): 119-129.
  • 5Zou D X, Gao L Q, Li S, et al. A novel global harmony search algorithm for task assignment problem[J]. Journal of Systems and Software, 2010, 83(10): 1678-1688.
  • 6de Castro L N, von Zuben F J. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolu- tionary Computation, 2002, 6(3): 239-251.
  • 7de Castro L N, von Zuben F J. The clonal selection algorithm with engineering applications[C]//Proceedings of GECC'00 Workshop on Artificial Immune and Their Applications. Piscat- away, NJ, USA: IEEE, 2000: 36-37.
  • 8Yin P Y, Yu S S, Wang P P, et al. A hybrid particle swarm op- timization algorithm for optimal task assignment in distributed system[J]. Computer Standards & Interfaces, 2006, 28(4): 441- 450.
  • 9Gong M G, Jiao L C, Zhang L N. Baldwinian learning in clonal selection algorithm for optimization[J]. Information Sciences, 2010, 180(8): 1218-1236.
  • 10Hong J, Lee W, Lee S, et al. An efficient production algorithm for multihead surface mounting machines using the biological immune algorithm[J]. International Journal of Fuzzy Systems, 2000, 1(2): 45-53.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部