期刊文献+

一种利用膜计算求解高维函数的全局优化算法 被引量:9

Algorithm for solving global optimization problems of multi-dimensional function based on membrane computing
下载PDF
导出
摘要 鉴于传统优化算法在求解高维多模态优化问题时存在收敛速度慢,求解精度低的缺点,针对上述问题提出了一种基于膜计算的优化算法。算法首先对高维空间进行分割,分割后每个子空间作为一个基本膜,基本膜区域中采用差分局部搜索策略提高算法的局部搜索能力和收敛速度。基本膜区域将局部最优解定时传送给表层膜。表层膜区域中采用全局搜索策略寻找全局最优解。通过对5个benchmark函数仿真验证,实验结果表明,该算法在收敛速度,求解精度和稳定性方面都有较大优势。 Traditional differential evolution algorithm exists shortcoming,such as trapping into local optimum easily,low convergence speed and solution precision.This paper presents an optimization algorithm for solving global optimization problems of multi-dimensional function based on membrane computing.With this algorithm,high dimension space is segmented some subspaces and each subspace is an elementary membrane.In elementary membrane,differential evolution algorithm is used to do local search strategy which enhances the searching ability and accelerates the convergent speed.At the same time,local optimal solutions in the elementary membrane are sent to outermost membrane and the outermost membrane searchs the global optimal solutions with global search strategy.The experimental test indicates the algorithm has the advantages of fine stability, fast convergence speed and high precision and can get the global optimal solutions.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期27-30,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2008AA01A303 陕西理工学院青年科研基金项目(No.SLG0818) 陕西省教育厅科研项目(No.2010JK459 No.2010JK466)~~
关键词 膜计算 高维多模 全局优化 差分进化 membrane computing multi-dimensional function global optimization differential evolution
  • 相关文献

参考文献3

二级参考文献18

  • 1曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 2Kennedy J, Eberhart R C. Particle swarm optimization// Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 3Shi Y, Eberhart R C. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolutionary Computation, 1998:69-73.
  • 4Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001: 1011-106.
  • 5Clerc M. The swarm and the queen: Toward a deterministic and adaptive particle swarm optimization//Proceedings of the Congress on Evolutionary Computation, 1999: 1951-1957.
  • 6Corne D, Dorigo M, Glover F. New Ideas in Optimization. McGraw Hill, 1999:379-387.
  • 7Angeline P J. Using selection to improve particle swarm optimization//Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, USA, 1998:84-89.
  • 8Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences//Proceedings of the 7th Annual Conference on Evolutionary Programming. Germany, 1998:601-610.
  • 9Suganthan P N. Particle swarm optimizer with neighborhood topology on particle swarm performance//Proeeedings of the 1999 Congress on Evolutionary Computation, 1999: 1958- 1962.
  • 10Kennedy J. Small worlds and Mega-minds: Effects of neighborhood topology on particle swarm performance//Proceedings of the Congress on Evolutionary Computation, 1999 1931-1938.

共引文献167

同被引文献89

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部