期刊文献+

结合K-means的并行粒子群优化

Parallel particle swarm optimization combined K-means
下载PDF
导出
摘要 通过给基于孤岛模型的并行粒子群算法引入K-means来进行子种群的划分。这不仅可以使一个子种群中的粒子位置相对集中,学习相对容易,而且可以提高搜索效率,使有限的时间用在最有效的搜索上。针对并行算法的特点,对其进行改进,在满足一定条件时才进行通信,这样可以避免无效通信,减少通信所花的时间。仿真结果证实,该算法具有较高的收敛速度和收敛精度。 By introducing K-means for the parallel particle swarm optimization based on an island model,the populations are divided into several sub-populations.It can not only make the location of the particles in the same sub-population be in the relative concentrative,and be relatively easy to learn,but also improve the search efficiency,so that the limited time will be spent on the most effective search.According to the characteristics of them,the parallel algorithms are improved.When certain conditions are met,it carries on communications,so that ineffective communications can be avoided to reduce the time spent for communications.The simulation results confirm that the algorithms have a high convergence speed and convergence accuracy.
作者 张捷 封俊红
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期60-62,共3页 Computer Engineering and Applications
关键词 K-MEANS 并行 粒子群 优化 K-means parallel particle swarm optimization optimization
  • 相关文献

参考文献10

二级参考文献43

  • 1胡峰,胡保生.并行计算技术与并行算法综述[J].电脑与信息技术,1999,7(5):47-59. 被引量:10
  • 2潘峰,涂序彦,陈杰,付继伟.协调粒子群优化算法—HPSO[J].计算机工程,2005,31(1):169-171. 被引量:10
  • 3杜琼,周一届.新的进化算法——文化算法[J].计算机科学,2005,32(9):142-144. 被引量:15
  • 4孙辉,张忠梅,葛寒娟.微粒群算法在改进多元线性回归上的应用[J].计算机工程与应用,2007,43(3):43-44. 被引量:9
  • 5陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 6Mostaghim S,Teich J.Strategies for Finding Local Guides in Multi-objective Particle Swarm Optimization (MOPSO)[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:26-33.
  • 7Shi Y,Eberhart R C.A modified Particle Swarm Optimizer[A].Proc of the IEEE Congress on Evolutionary Computation[C].Piscataway,1998:69-73.
  • 8Eberhart R C,Shi Y.Particle Swarm Optimization:Developments,Applications and Resources[A].Proc of the IEEE Congress on Evolutionary Computation[C].Seoul,2001:81-86.
  • 9Schutte J F,Reinbolt J A,Fregly B J,et al.Parallel Global Optimization with the Particle Swarm Algorithm[J].Int J Numerical Methods in Engineering,2004,61(13):2296-2315.
  • 10Peram T,Veeramachaneni K,Mohan C K.Fitness-distance-ratio Based Particle Swarm Optimization[A].Proc of the IEEE Swarm Intelligence Symposium[C].Indianapolis,2003:174-181

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部