期刊文献+

基于BP神经网络的高分辨率遥感影像分类 被引量:4

Classification of High-resolution Image Based on Spectral and Textural Features by Back-propagation Neural Network
下载PDF
导出
摘要 为了能有效地从高分辨率遥感影像中提取地物信息,本文通过影像的光谱和纹理特征,利用BP神经网络算法进行影像分类研究。首先提取分类所需的光谱和纹理特征源,然后根据影像和地物特征,建立BP神经网络,用于样本训练和分类处理,实现地物分类。为验证该方法的可靠性,以2006年11月获取的成都平原某区域的Quickbird影像为实验数据,进行高分辨率遥感影像的地物分类实验。实验结果表明,结合影像光谱和纹理特征的BP神经网络分类算法,不仅可以有效保证BP神经网络分类训练的稳定性和收敛速度,还能达到较高的分类精度。 To extract the object-level information from the high-resolution satellite imagery,this paper presents a non-parametric classification approach termed back-propagation(BP) neural network.Both spectral and textural features extracted from high-resolution images are jointly used in the BP solution for the purpose of implementing classification.The experiments are performed using the multi-spectral(resolution 2.44 m) and panchromatic(resolution 0.61 m) images acquired by the satellite Quickbird in November of 2006 around the certain plain area of Chengdu,Sichuan.The quality of BP classification is assessed by checking two indicators,i.e.,overall accuracy and Kappa coefficient.The testing results show that the joint use of spectral and textural features can take high classification accuracy,as well as ensuring the training stability and convergence rate.
作者 杨希 王鹏
出处 《测绘》 2011年第3期115-118,共4页 Surveying and Mapping
关键词 影像分类 纹理特征 光谱特征 BP神经网络 Classification Spectral features Textural features Back-propagation neural network
  • 相关文献

参考文献8

  • 1John A Digital Edition Richards, Xiuping Jia. Remote Sensing Image Analysis: An Introduction[M]. Third with 181 Figures. Tokyo: Springer, 1999.
  • 2Richard P. Lippmann. Pattern Classification Using Neural Networks[J]. IEEE Communications Magazine, 1989, 27(11): 47-64.
  • 3Ren Dianwei, Abdelsalam Factor (OIF) for ASTER Neoproterozoic Allaqi (Geological Society of November 5-8, 2001. Mohamed G. Optimum Index Data: Examples from the Suture, Egypt[C]. GSA America) Annual Meeting,.
  • 4Q. Zhang, J. Wang, P. Gong, et al. Study of Urban Spatial Patterns from SPOT Panchromatic Imagery Using Textural Analysis [J]. International Journal of Remote Sensing, 2003, 24(21): 4137-4160.
  • 5贾永红.人工神经网络在多源遥感影像分类中的应用[J].测绘通报,2000(7):7-8. 被引量:39
  • 6潘东晓,虞勤国,赵元洪.遥感图像的神经网络分类法[J].国土资源遥感,1996,8(3):49-55. 被引量:23
  • 7贾永红,张春森,王爱平.基于BP神经网络的多源遥感影像分类[J].西安科技学院学报,2001,21(1):58-60. 被引量:30
  • 8JonA. Benediktsson, PhilipH. Swain, OkanK. Ersoy. Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data [J]. IEEE Transactions on 6eoscience and Remote Sensing, 1990, 28(4): 540 552.

二级参考文献4

共引文献81

同被引文献51

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部