期刊文献+

硫系相变材料Ge_1Sb_2Te_4和Ge_2Sb_2Te_5薄膜相变速度及电学输运性质研究

Study of Transition Speed and Electrical Transportation Properties of Ge_1Sb_2Te_4 and Ge_2Sb_2Te_5 Chalcogenide Phase-change Materials
下载PDF
导出
摘要 利用磁控溅射方法制备了Ge_1Sb_2Te_4和Ge_2Sb_2Te_5两种相变存贮材料的薄膜。原位X射线衍射(XRD)的结果表明,随着退火温度的升高,Ge_1Sb_2Te_4和Ge_2Sb_2Te_5薄膜都逐步晶化,材料结构发生了从非晶态到面心立方结构、再到六角密堆结构的转变。由衍射峰的半宽高可以看出,在达到第一次相变温度后,Ge_2Sb_2Te_5比Ge_1Sb_2Te_4结晶更快。原位变温电阻测量的结果显示,在相同的升温速率下,Ge_2Sb_2Te_5的热致晶化速率更快。而且Ge_2Sb_2Te_5非晶态与晶态的电阻差值更高。故Ge_2Sb_2Te_5比Ge_1Sb_2Te_4更适合作为相变存储器的材料。另外,对两种薄膜的电学输运性质进行了研究,霍尔效应的测量表明,Ge_1Sb_2Te_4材料电导的变化是迁移率和载流子浓度共同作用的结果,而Ge_2Sb_2Te_5材料电导的变化主要是由于载流子浓度的变化引起。 The Ge1Sb2Te4 and Ge2Sb2Te5 thin films were deposited by radio frequency magnetron sputtering. XRD measurement showed that with temperature increasing structure of Ge1Sb2Te, and Ge2Sb2Te5changed from amorphous to face-centered-cubic structure, and finally to hexagonal structure. Prom the results of XRD and resistance measurement, we got that Ge2Sb2Te5 crystallizes fast than Ge1Sb2Te4 and has a larger difference of resistance between amor- phous state and crystalline state. So Ge2Sb2Te5is more suitable for data storage. Measurement of Hall Effect gives the conclusion that conductivity of Ge1Sb2Te4 is dominated by Hall mobility and carrier concentration both, while conductivity of Ge2Sb2Te5is mainly dominated by carrier concentration.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2011年第3期310-314,共5页 Research & Progress of SSE
基金 国家自然科学基金资助项目(60976001和50872051) 国家自然科学基金重点资助项目(61036001) 高等学校博士学科点专项科研基金资助项目(20090091110010) 江苏省国际科技合作计划资助项目(BZ2010068) 国家重点基础研究发展规划资助项目(2007CB935401和2007CB613401)
关键词 相变存贮材料 Ge_1Sb_2Te_4 Ge_2Sb_2Te_5 phase change materials Ge1Sb2Te4 Ge2Sb2Te5
  • 相关文献

参考文献17

  • 1Kolobov A V, Fons P, Frenkel A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3: 703-708.
  • 2Matthias Wuttig. Phase-change materials: Towards a universal memory? [J]. Nature Materials, 2005, 4: 265-266.
  • 3Lankhorst M H R, Ketelaars B W S M M, Wolters R A M. Low-cost and nanoscale non-volatile memory concept for future silicon chips [J]. Nature Materials, 2005,4: 347-352.
  • 4Motoyasu Terao, Takahiro Morikawa, Takeo Ohta. Electrical phase-change memory: fundamentals and state of the art [J]. Japanese Journal of Applied Physics, 2009, 48(1): 080001-1-14.
  • 5Stanford R Ovshinsky. Reversible electrical switching phenomena in disordered structures [J]. Physical Review Letters, 1968,21 : 1450-1453.
  • 6Noboru Yamada, Eiji Ohno, Kenichi Nishiuchi, et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory[J]. Journal of Applied Physics, 1991,69: 2849-2856.
  • 7Akola J, Jones R O. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2SbzTes and GeTe [J]. Physical Review B, 2007, 76(23):235201-1-10.
  • 8Akola J, Jones R O. Density functional study of amorphous, liquid and crystalline GezSbzTes: ho-mopolar bonds and/or AB alternation? [J]. Journal of Physics~ Condensed Matter, 2008, 20 (46):465103- 1-10.
  • 9Akola J, Jones R O, Kohara S, et al. Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change material GezSb2Tes[J]. Physical Review B, 2009, 80 (2) : 020201-1-4.
  • 10Raty Jean-Yves, Otjacques C61ine, Gaspard Jean- Pierre, et al. Amorphous structure and electronic properties of the GelSb2Te4phase change material [J]. Solid State Science, 2010, 12(2)I 193-198.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部