期刊文献+

射影簇和向量丛的数字不变量对超二次曲面的刻画

Characterization of hyperquadrics by the numerical invariant of projective varieties and vector bundles
下载PDF
导出
摘要 设X是光滑的n维射影簇,E是X上的丰富向量丛,E的秩r<n.如果E在X上的数字有效值为nr,且X的皮卡数1,则X是超二次曲面Qn,E是线丛OQn(1)的直和. Let X be a smooth projective variety of dimension n and E an ample vector bundle with rank r 〈 n. Assume that numerically effective value of E over X is n and that the Picard number of X is r one, then X is a hyperquadric Q^n and E is a direct sum of line bundles OQ^n ( 1 ).
机构地区 暨南大学数学系
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2011年第3期258-259,262,共3页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金资助项目(61070165)
关键词 射影簇 向量丛 超二次曲面 projective variety vector bundle hyperquadric
  • 相关文献

参考文献9

  • 1KOBAYASHI S, OCHIAI T. Characterization of the com-plex projective space and hyperquadrics[J]. J Math Kyo-to Univ, 1972, 13:31-47.
  • 2KACHI Y, KOLLAR J. Characterizations of pn in arbi-trary characteristic[J]. Asian J Math, 2000, 4:115-122.
  • 3CHO K, MIYAOKA Y, BARRON N. Characterizationsof projective space and applications to complex symplecticmanifolds[J]. Adv Stud Pure Math, 2002, 35:1-88.
  • 4BELTRAMETTI M, SOMMESE A. The Adjunction Theo-ry of Complex Projective Varieties[M]. Berlin: Walter deGruyter, 1995.
  • 5DEBARRE O. Higher-Dimensional Algebraic Geometry[M]. New York: Springer-Verlag, 2001.
  • 6WISNIEWISKI J. Length of extremal rays and generalizedadjunction [J]. Math Z, 1989, 200:409-427.
  • 7MIYAOKA Y. Numerical characterizations of hyperquad-rics[J]. Adv Stud Pure Math, 2004, 42:209-235.
  • 8MORI S. Threefolds whose canonical bundles are not nu-merically effective[J]. Ann Math Z, 1982, 116:133-176.
  • 9PETERNELL T. Ample vector bundles on Fano manifolds[J]. International J of Math, 1991, 2:311-322.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部