期刊文献+

BC网络的子网络最大链路数问题

The maximum link number of subnetwork in BC networks
下载PDF
导出
摘要 BC网络是一类网络结构,立方体网络、交叉立方体网络、扭立方体网络、Mobius cube等等是BC网络的一些具体类型.网络的子网络最大链路数问题有着重要的理论和实践意义.得到了BC网络的m-维子网络最大链路数为g(m)=r-1∑i=0(li/2+i)2li,m=r-1∑i=02li,l0>l1>…>lr-1≥0. BC networks is an important class of hypercube-like interconnection networks. Hypercube, Crossed cube, Twisted cube and Mobius cube are some specific types of BC networks. The maximum link number of subnetwork in some networks has important theoretical and practical significance. We obtain the maximum link number of m - dimensional BC networks is g(m)=∑i=0^r-1(li/2+i)2^li,m=∑i=0^r-12li,l0〉l1〉…〉lr-1≥0.
作者 谭学功
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2011年第3期277-280,共4页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家民委青年基金项目(09HB06) 中央高校基本科研业务费专项资金资助项目(21669602)
关键词 互联网络 立方体网络 BC网络 子网络 最大链路数 interconnection networks hypercube BC networks subnetwork maximum linknumber
  • 相关文献

参考文献17

  • 1HESIS M. Error-decting unit-distance code [J]. IEEETrans Instrum Meas, 1990,39:730-734.
  • 2KHALED A S, ABDEL- GHAFFAR. Maximum numberof edges joining vertices on a cube [J]. Information Pro-cessing Letters, 2003,87:95-99.
  • 3SAAD Y, SCHULTZ M H. Topological propertices of hy-perecubes[J]. IEEE Transactions on Computers, 1988,37:867-872.
  • 4PARK J H, LIM H S, KIM H C. Panconnectivity and pan-cyclicity of hypercube-like interconnection networks withfaulty elements [J]. Theoretical Computer Science, 2007,377 : 170-180.
  • 5STANLEY K O, DAMBROSIO D B, GAUCI J. A hyper-cube-based encoding for evolving large-Scale neural net-works[J]. Artificial Life, 2009,15 : 185-212.
  • 6HANS C, XIA Y. Network load-aware content distribu-tion in overlay networks[J]. Computer Communications,2009,32:51-61.
  • 7BONA L C E, FONSECA K V O, DUARTE E P Jr, etal. HyperBone: A Scalable Overlay Network Based on aVirtual Hypercube[C].//Eighth IEEE International Sym-posium on Cluster Computing and the Grid (CCGRID),2008.
  • 8YINGGUANG L I, TAMER OZSU M, KIAN-LEE TAN.XCube: Processing XPath queries in a hypercube overlaynetwork [J]. Peer-to-Peer Networking and Applications,2009,2 : 128-145.
  • 9ANTONIA GALLARDO, LUIS DIAZ DE CERIO, KANASANJEEVAN. Self-configuring resource discovery on ahypercube grid overlay [J]. Lecture Notes in ComputerScience, 2008,5168:510-519.
  • 10MARIO S, MICHAEL S, STEFAN D, et al. Hypercup-hypercubes, ontologies, and efficient search on peer-to-peer networks [J]. Lecture Notes in Computer Science,2003, 2530:133-134.

二级参考文献20

  • 1[1]Efe K. A variation on the hypercube with lower diameter.IEEE Transactions on Computers, 1991,40(11) :1312~1316
  • 2[2]Cull P, Larson S M. The Mobius cubes. IEEE Transactions on Computers, 1995, 44(5): 647~659
  • 3[3]Efe K. The crossed cube architecture for Parallel Computing. IEEE Transactions on Parallel and Distributed Systems, 1992,3(5):513~524
  • 4[4]Efe K, Blachwell P K, Slough W, Shiau T. Topological properties of the crossed cube architecture. Parallel Computing,1994, 21(12):1763~1775
  • 5[5]Chang C-P, Sung T-Y, Hsu L-H. Edge congestion and topological properties of crossed cubes. IEEE Transactions on Computers, 2000, 11(1):63~80
  • 6[6]Kulasinghe P, Bettayeb S. Embedding binary trees into crossed cubes. IEEE Transactions on Computers, 1995, 44(7):923~929
  • 7[7]Kulasinghe P. Connectivity of the crossed cubes. Information Processing Letters, 1997, 61(4):222~226
  • 8[8]Fan J. Diagnosability of the Mobius cubes. IEEE Transactions on Parallel and Distributed Systems, 1998, 9(9):923~928
  • 9[9]Fan J. Hamilton-connectivity and cycle-embedding of the Mobius cubes. Information Processing Letters, 2002, 82(2):113~117
  • 10[10]Fan J. Diagnosability of Crossed cubes under the comparison diagnosis model. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(7) :687~692

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部