期刊文献+

含有信用风险的跳扩散市场的最优组合选择

Optimal Portfolio Selection for Containing Credit Risk in a Jump-Diffusion Market
下载PDF
导出
摘要 假定投资者将其财富分配在这样两种风险资产中,一种是股票,价格服从跳跃扩散过程;一种是有信用风险的债券,其价格服从复合泊松过程.在均值方差准则下通过最优控制原理来研究投资者的最优投资策略选择问题,得到了最优投资策略及有效边界.最后通过数值例子分析了违约强度、债券预期收益率以及目标财富对最优投资策略的影响. Assume that an investor can allocate his wealth dynamically between a risky stock,whose price follows a jump-diffusion process,and a risky bond,whose price is subject to negative jumps due to its credit risk.Its price contains discontinuous sample paths,so it is subject to the compound Poisson process.The optimal investment strategy under the mean-variance principle was studied by the stochastic control approach.The closed and explicit formulas for the optimal investment strategy and the efficient frontier were derived.Finally,the effects of default intensity,the expected rate of return and the wealth target on optimal investment strategy were analyzed by numerical examples.
作者 张琳 郭文旌
出处 《经济数学》 北大核心 2011年第2期60-63,共4页 Journal of Quantitative Economics
基金 国家自然科学基金项目(70871058) 教育部人文社科基金(09YJA790100) 清华大学经济管理学院中国保险与风险管理研究中心资助项目 江苏省统计局课题(2009LY16) 江苏省高校哲学社会科学基金(09SJB790013)
关键词 跳跃扩散过程 信用风险 最优投资策略 有效边界 jump-diffusion process credit risk optimal investment strategy efficient frontier.
  • 相关文献

参考文献8

  • 1S BROWNE. Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin[J]. Mathematics of Operations Research, 1995,20(4) :937-958.
  • 2X Y ZHOU, D LI. Continuous-time mean-variance portfolioselection: a stochastic LQ framework [J]. Applied Mathemat-ics & Optimization,2000,42(1):19-33.
  • 3X LI, X Y ZHOU, A E B LIM. Dynamic mean-variance port- folio selection with no-shorting constraints[J]. SIAM Journal of Control and Optimization,2002,40(5):1540-1555.
  • 4H L YANG, L H ZHANG. Optimal investment for insurer with jump diffusion risk proeess[J]. Insurance: Mathematics & Economics,2005,37(3) :615-634.
  • 5郭文旌.跳跃扩散股价的最优投资组合选择[J].控制理论与应用,2005,22(2):171-176. 被引量:19
  • 6.中华人民共和国进出口商品检验行业标准[M].中国标准出版社,1995..
  • 7S BROWNE, S. Optimal growth in continuous-tlme with cred- it risk[J]. Probability in the Engineering and Informational Sciences, 1999,13 : 129-145.
  • 8史蒂文E.施里夫.金融随机分析[M]. 2版,上海:上海财经大学出版社.2008.

二级参考文献16

  • 1MERTON R C. Optimum consumption and portfolio rules in a continuous time model [ J]. J of Economic Theory, 1971,3( 12): 373 -413.
  • 2COX J C, HUANG C F. Optimal consumption and portfolio policies when asset prices follow a diffusion process [ J]. J of Economic Theory, 1989,49(1) :33 - 83.
  • 3ZHOU X Y, LID. Continuous-time mean-variance portfolio selection: a stochastic LQ framework [ J]. Applied Mathematics and Optimization ,2000,42( 1 ): 19 - 33.
  • 4LIM A, ZHOU X Y. Mean-variance portfolio selection with random parameters in a complete market [J] .Mathematics of Operations Research,2002,27(1): 101 - 120.
  • 5LI X, ZHOU X Y, LIMA. Dynamic mean-variance portfolio selection with no-shorting constraints [J]. SIMA J of Control and Optimization ,2002,40(5): 1540 - 1555.
  • 6PLISKA S R.A stochastic calculus model of continuous trading optimal portfolio [ J ]. Mathematics of Operations Research, 1986,11 ( 2 ):371 - 382.
  • 7MERTON R C. Option pricing when underlying stock returns are discontinuous [ J ]. J of Financial Economics, 1976,3 ( 1 ): 125 - 144.
  • 8JARROW R A,RUDD A. Option Pricing[M] .Illinois:Irwin,1983.
  • 9JONES E P. Option arbitrage and strategy with large price changes [J]. J of Financial Economics, 1984,13( 1 ): 91 - 113.
  • 10JEANBLANCE-PICQUE M, PONTIER M. Optimal portfolio for a small investor in a market model with discontinuous prices [ J]. Applied Mathematics and Optimization, 1990,22(2) :287 - 310.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部