期刊文献+

基于回声状态网络的转炉终点碳和温度预测

PREDICTION FOR THE CONTENT OF CARBON AND TEMPERATURE AT THE ENDPOINT OF BOF BASED ON ECHO STATE NETWORK
下载PDF
导出
摘要 本文利用回声状态网络建立了转炉终点钢水碳含量和温度预测模型,并应用遗传算法优化其主要参数。选用某钢厂3座120t转炉的实测数据对该网络模型进行离线训练和仿真测试,结果表明回声状态网络模型比BP神经网络模型在预测精度上有所提高。这为开展转炉实时预测工作提供了方法指导。 An ESN model of endpoint temperature and the carbon content was set up,and the main parameters of the model were optimized by the genetic algorithm.The practical data of three 120t converters from a steel plant was selected for off-time training of the network model and simulating test.The results showed that the echo state network model was better than BP neural network model for improving the prediction accuracy.It provided method guidance for real-time forecasting.
作者 耿涛 李启贤
出处 《冶金丛刊》 2011年第3期4-7,共4页 Metallurgical Collections
关键词 转炉终点预测 回声状态网络 遗传算法 prediction of the endpoint of BOF echo state network genetic algorithm
  • 相关文献

参考文献9

  • 1王登峰,倪红卫.人工神经网络在转炉炼钢终点预报中的应用研究[J].钢铁研究,2005,33(2):27-31. 被引量:10
  • 2刘浏.转炉控制信息与在线检测技术(下)[J].冶金自动化,2000,24(3):5-7. 被引量:19
  • 3H. Jaeger and H. Haas. Harnessing non -linearity: Predicting chaotic systems and saving energy in wireless communication[ J]. SCIENCE, April 2, 2004 Vol. 304:78 - 80.
  • 4W. Maass, T. Natschlager, and H. Markram. Real - time computing without stable states: A new framework for neural computation based on perturbations[ J]. Neural Computation, 14( 11 ) :2531 - 2560, 2002.
  • 5Jaeger H. A tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and "echo state network" approach[ R]. Bremen, Ger- man National Research Center for Information Technology, 2002:1 -46.
  • 6Jaeger H. The "echo state" approach to analyzing anti training recurrent neural networks [ R ]. GMD Reprot 148, GMD -German National Re- search Institute for Computer Science,2001 : 1 - 43.
  • 7Ishii, K. , van der Zant, T. , Vlatko Becanovic, V. , and Ploger, P.. Identi? cation of motion with echo state network [J].In OCEANS ' MTS/ IEEETECHNO - OCEAN' , vol. 3, pages 1205 - 1210, 2004.
  • 8袁长清,李俊峰,邓志东,宝音贺西.基于ESN网络的航天器姿态跟踪鲁棒控制[J].清华大学学报(自然科学版),2008,48(8):1362-1367. 被引量:9
  • 9Jaeger H. , Lukosevicius M. , Popovici D. , and Siewert U. Optimization and Applications of Echo State Networks with Leaky Integrator Neurons [J]. Neural Networks, vol. 20, no. 3, pp. 335 -352, 2007.

二级参考文献33

  • 1戈明亮.阻燃PC/ABS合金的研究与应用进展[J].塑料科技,2005,33(6):57-61. 被引量:14
  • 2孙志兵,杨涛,戴金海.卫星CMAC神经网络姿态控制器设计及仿真[J].上海航天,2007,24(1):38-41. 被引量:1
  • 3王彪,唐超颖.航天器姿态的神经网络动态逆控制[J].系统工程与电子技术,2007,29(2):246-249. 被引量:6
  • 4丁容,刘浏.转炉炼钢过程人工智能静态控制模型[J].钢铁,1997,32(1):22-26. 被引量:36
  • 5Singh S N, Bossart T C. Exact feedback linearization and control of space station using CMG [J]. IEEE Trans on Automatic Control, 1993, 38(1): 184 - 187.
  • 6Cheon Y J, Keum J H, Sim E S. Sliding mode control of spacecraft with actuator dynamics [C]// Int Conf on Control, Automation and Systems. Jeju, Korea, 2001: 642 - 646.
  • 7Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless telecommunication [J]. Science, 2004:78 - 80.
  • 8DENG Zhidong, YI Zhang. Collective behavior of a small-world recurrent neural system with scale-free distribution [J]. IEEE Transactions on Neural Networks, 2007, 18(5): 1364-1376.
  • 9Oubbati M, Levi P, Schanz M. Meta-learning for adaptive identification of nonlinear dynamical systems [C]// Proceedings of the 2005 IEEE International Symposium on Intelligent Control Limassol. Cyprus, June 27- 29, 2005: 473 - 477.
  • 10Herbert Jaeger. Adaptive nonlinear system identification with echo state networks [C]// Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT Press, 2003: 593 - 600.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部