摘要
给出高斯迷向凸体和高斯迷向常数的定义,证明高斯迷向凸体的存在性和正交不变性等.另外,通过对单位体积球体和方体的高斯迷向常数进行计算,发现其具有与Lebesgue测度下凸体迷向常数变化相反的性质.
Gaussian isotropic bodies and Gaussian isotropic constants were defined,and the existence and orthogonal invariability of Gaussian isotropic bodies were proved.By calculating the Gaussian isotropic constants of a ball and a cube,both with unit volume,we show that changes in the Gaussian isotropic constants in the Gaussian measure are opposite to those in the Lebesgue measure.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第3期266-269,共4页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(11071156)
关键词
凸体
高斯测度
迷向常数
convex body
Gaussian measure
isotropic constant