期刊文献+

超固结土模型平面应变分叉理论解与数值模拟

Analytical Solution and Numerical Simulation for Plane Strain Bifurcation in Constitutive Model for Over-Consolidated Clays
下载PDF
导出
摘要 应变局部化理论最基本的问题在于局部化分叉产生的条件.针对基于伏斯列夫面超固结黏土三维弹塑性本构模型,推导平面应变条件下局部化分叉理论解及因局部化分叉而产生的剪切带倾角的表达式,并分析不同超固结比对局部化分叉理论解和剪切带倾角的影响.理论分析表明,在平面应变条件下,土体局部化分叉出现在应力应变硬化阶段,剪切带倾角在分叉前随着应变局部化的扩张发生显著变化,在分叉后趋于稳定.最后,利用非线性有限元软件ABAQUS,在平面应变应力路径下对均匀各向同性多单元立方体局部化分叉现象进行数值分析,得出的局部化分叉数值解与理论解较为一致,验证了理论解的可靠性. A fundamental problem concerning the theory of strain localization is the condition of the occurrence of localization bifurcation.Based on the Hvorslev envelope-based three-dimensional elastoplastic constitutive model for over-consolidated clay,an analytical solution of bifurcation and the expression of inclination angle for shear band caused by localization bifurcation are derived for strain localization in plane strain stress states.Meanwhile,influences of over-consolidation ratio(OCR) on the analytical solution and the inclination angle are analyzed.The theoretical analysis shows that onset of localization bifurcation occurs in the hardening regime under the plane strain conditions and,with strain localization expanding,the change in inclination angle of shear band is striking before bifurcation and steady thereafter.On the other hand,numerical simulation of plane strain tests on the isotropically homogenous cubic specimen for the bifurcation is carried out by using a finite element analysis software ABAQUS with the model implemented.Numerical solutions exhibit a good overall agreement with analytical solutions for the bifurcation onset,indicating that the analytical solutions are reasonable.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期307-313,共7页 Journal of Shanghai University:Natural Science Edition
基金 教育部博士点基金资助项目(20093108110017)
关键词 超固结黏土 本构模型 平面应变 分叉 理论解 数值模拟 over-consolidated clay constitutive model plane strain bifurcation analytical solution numerical simulation
  • 相关文献

参考文献16

  • 1CHU J, LOS C R, LEE I K. Strain softening and shear band formation of sand in multi-axial test [ J ]. Geotechnique, 1996, 46( 1 ) :63-82.
  • 2WANG Q, LADE P V. Shear banding in true triaxial tests and its effect on failure in sand [ J ]. Journal of Engineering Mechanics, 2001, 127 (8) :754-761.
  • 3SUN D A, HUANG W X, YAO Y P. An experimental study of failure and softening in sand under three- dimensional stress condition [ J ]. Granular Matter, 2008, 10(3) :187-195.
  • 4KHALID A, ALSHIBLI I S A. Strain localization in clay: plane strain versus triaxial loading conditions [ J ]. Geotechnical and Geological Engineering, 2007, 25:45- 55.
  • 5RUDNICKI J W, RICE J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials [ J ]. Journal of the Mechanics and Physics of Solids, 1975, 23:371-394.
  • 6VARDOULAKIS I, SULEM J. Bifurcation analysis in geomechanics [ M ]. New York: Blackie Academic & Professional, 1995.
  • 7ANAND L, SPITZIG W A. Initiation of localized shear bands in plane-strain [ J ]. Journal of the Mechanics and Physics of Solids, 1980, 28 (2) : 113-128.
  • 8ANAND L, SPITZIG W A. Shear-band orientations in plane-strain [ J]. Acta Metallurgica, 1982, 30(2) :553- 561.
  • 9钱建固,黄茂松.土体应变局部化现象的理论解析[J].岩土力学,2005,26(3):432-436. 被引量:24
  • 10HUANG W X, SUN D A, SLOAN S W. Analysis of the failure mode and softening behaviour of sands in true triaxial tests [ J ]. International Journal of Solids andStructures, 2007, 44 : 1423-1437.

二级参考文献57

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部