期刊文献+

债券定价及利率风险的市场价格的重构方法

Method of the bond pricing and the market price of the interest rate risk
下载PDF
导出
摘要 假设利率变化的模型是由随机微分方程给出,则可以用推导Black-Scholes方程的方法来推出债券价格满足的偏微分方程,得到一个抛物型的偏微分方程.但是,在债券定价的方程中隐含有一个参数λ称为利率风险的市场价格.所谓债券定价的反问题,就是由不同到期时间的债券的现在价格来得到利率风险的市场价格.对随机利率模型下债券定价的正问题先给予介绍和差分数值求解方法,并介绍了反问题,且对反问题给出了数值方法. Assume that the interest rate fluctuating model is given by the stochastic differential equations,then we can use the derivation for Black-Scholes equation to deduce a parabolic partial differential equation which satisfies the bond prices.But the bond pricing equations imply a parameter which is called the market price of the interest rate risk.The so-called inverse problem of bond pricing,that is,to get the marker price of the interest rate risk with current bond prices of different maturates.Stochastic interest rate model for bond pricing and the difference numerical method are introduced,and the numerical method for the inverse problem is also proposed.
作者 林杨 谭永基
出处 《应用数学与计算数学学报》 2011年第1期1-10,共10页 Communication on Applied Mathematics and Computation
关键词 随机利率模型 B-S模型 利率风险的市场价格 差分法 积分方程 stochastic interest rate model B-S model market price of the interest rate risk difference method integral equation
  • 相关文献

参考文献12

  • 1Bouchouev I, Isako V. The inverse problem of option pricing [J]. Inverse Problem, 1997, 13(5): 11-17.
  • 2Friedman A. Partial differential equation of parabolic type [M]. Englewood Cliffs, N J: Prentice- Hall, 1964.
  • 3Wilmatt P, Dewynne J, Howison S. Option pricing: mathematical model and computatuional [M]. Oxford: Oxford Financial Press, 1994.
  • 4Isakov V. Inverse problems for partial differential equations [M]. Berlin: Spring-Verlag, 2005.
  • 5Gregory M N, Miron J A. The" changing" behavior of the term" structure of interest rates [J]. Quarterly Journal of Economics, 1986, 101(2): 211-228.
  • 6Hull J C, White A. One factor interest rate models and the valuation of interest rate derivative securities [J]. Journal of Financial and Quantitative Analysis, 1993, 28(2): 235-254.
  • 7Hull J C. Options, features, and other derivative securities [M]. Englewood Cliffs, N J: Prentice- Hall, 2005.
  • 8Scott L O. Option pricing when the variance changes randomly: theory, estimation and appli- cation [J]. Journal of Financial and Quantitative Analysis, 1987, 22(4): 419-438.
  • 9Arnold-l. Theory and application of stochastic differential equations [M]. New York: John Wily and Sons, 1987.
  • 10Huli J, White A. Valuing derivatives securities using the explicit finite difference methods [J]. Journal of Financial and Quantitative Analysis, 1990, 25(1): 87-100.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部