期刊文献+

纳滤体器件在生物分子分离中的研究进展

Progress of biomolecule separation by nanofilter in experimental and theoretical research
原文传递
导出
摘要 人类对生物体系的理解取决于生物分子高效准确的挑选和分离.随着纳滤体器件(Nanofilter)的蓬勃发展,其在生物分子分离领域的应用受到了广泛关注,并成为无胶体系生物分子分离的热点之一.本文结合纳滤体器件的产生及发展,从纳滤体器件的设计及理论模型两方面重点阐述了纳滤体器件在生物分子分离方面的研究进展,并对纳滤体器件的计算机模拟进行了讨论.近年来,相比于传统的生物分子分离方法,纳滤体器件所具有的优势日益突出.而纳米技术的进一步发展,也使其具有很好的应用前景. Knowledge of biological systems critically depends on the ability to sort and separate biomolecules efficiently and accurately. The development of the nanofilter and its applications to separation of biomolecules have attracted much research attention, and the nanofilter has become one of the hot spots in gel-free separation of biomolecules. The technique and theoretical models are discussed to reveal the progress that has been made in biomolecule separation using nanofilters. Computer simulation of the nanofilter is also discussed. In recent years, the advantages of nanofilters compared with traditional separation methods for biomolecules have become increasingly apparent. Moreover, with the progress of nanotechnology the nanofilter will have commercial applications.
作者 夏广杰 汪蓉
出处 《科学通报》 EI CAS CSCD 北大核心 2011年第18期1411-1418,共8页 Chinese Science Bulletin
基金 国家自然科学基金(20874046,21074053) 国家重点基础研究发展计划(2010CB923303)资助项目
关键词 纳滤体器件 生物分子 分离 nanofilter biomolecules separation
  • 相关文献

参考文献59

  • 1Fu J, Mao P, Han J. Nanofilter array chip for fast gel-free biomolecule separation. Appl Phys Lett, 2005, 87:263902-263903.
  • 2Fu J, Schoch R B, Stevens A L, et al. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nano, 2007, 2:121-128.
  • 3Fu J, Yoo J, Han J. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys Rev Lett, 2006, 97: 018103.
  • 4DeJonge P, DeJongh F C M, Meijers R, et al. Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast, 2004, 2:193-204.
  • 5Guttman A, Cooke N. Capillary gel affinity electrophoresis of DNA fragments. Anal Chem, 1991, 63:2038-2042.
  • 6Wu C, Liu T, Chu B. Viscosity-adjustable block copolymer for DNA separation by capillary electrophoresis. Electrophoresis, 2005, 19: 231-241.
  • 7Madabhushi R S, Vainer M, Dolnik V, et al. Versatile low-viscosity sieving matrices for nondenaturing DNA separations using capillary array electrophoresis. Electrophoresis, 2005, 18:104-111.
  • 8耿利娜,姜萍,徐建栋,车宝泉,屈锋,邓玉林.纳米技术在毛细管电泳和微流控芯片电泳生物大分子分离中的应用[J].化学进展,2009,21(9):1905-1921. 被引量:2
  • 9Volkmuth W D, Austin R H. DNA electrophoresis in microlithographic arrays. Nature, 1992, 358:600-602.
  • 10Han J, Turner S W, Craighead H G. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett, 1999, 83:1688.

二级参考文献211

  • 1姚波,颜流水,王义明,罗国安.微全分析系统中的电色谱分离技术[J].分析化学,2004,32(12):1673-1676. 被引量:5
  • 2张阳德(Zhang Y D).纳米生物分析化学与分子生物学(Nanobiology Analysis Chemistry and Molecule Biology).北京:化学工业出版社(Beijing:Chemical Industry Press),2005.
  • 3朱静(Zhu J).纳米材料和器件(Nanomaterial and Instrument).北京:清华大学出版社(Beijing:Tsinghua University Press),2003.
  • 4Harrison D J, Fluri K, Seller K, et al. Science, 1993, 261: 895- 897.
  • 5Liu J, Lawrence E M, Wu A, et al. Phys. Rev. Lett., 1995, 74: 2828-2831.
  • 6Han J, Craighead H G. Science, 2000, 288:1026-1029.
  • 7Van Oudenaarden A, Boxer S G. Science, 1999, 285 (5430): 1046-1048.
  • 8Huang L R, Cox E C, Austin R H, Sturm J C. Science, 2004, 304 (5673) : 987-990.
  • 9Volkmuth W D, Austin R H. Nature, 1992, 3 (58) : 600-602.
  • 10MacDonald M P, Spalding G C, Dholakia K. Nature, 2003, 42b: 421-424.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部