期刊文献+

Alq_3有机发光二极管中的正负磁电导转变 被引量:4

Positive-negative inversion of magnetoconduce in Alq_3-based organic light-emitting diode
原文传递
导出
摘要 制备了基于Alq3的有机发光二极管,器件结构为ITO/CuPc/NPB/Alq3/LiF/Al,并在不同温度下测量了器件在恒压偏置下传导电流的磁电导效应.当Alq3发光层的厚度为15nm时,在器件的传导电流从双极电流过渡到单极电流的过程中,器件的磁电导发生了明显的正负转变;而当Alq3发光层的厚度为65nm时,在传导电流从双极电流到单极电流的过渡过程中,器件的磁电导呈现随电流减小先上升后下降的变化趋势,但磁电导的值在任何测量条件下始终为正,并未出现正负转变的现象.双极电流的磁电导效应可用电子-空穴对模型和激子-电荷反应模型来进行解释,而单极电流的磁电导效应虽然可归因于器件中的极化子-双极化子转变,但仍需要进一步的研究. Organic light-emitting diodes (OLEDs) based on Alq3 have been fabricated. The structure of devices is ITO/CuPc/NPB/Alq3/LiF/Al. The magnetoconductance (MC) effect on the current was measured with constant voltage bias. When the thickness of Alq3 layer is 15 nm, an apparent positive-negative inversion of MC occurred during the current transition from bipolar to unipolar. When the thickness of Alq3 layer was 65 nm, the MC values increased firstly and then fell with the decreasing current during the current transition from bipolar to unipolar. However, under any measurement conditions, the MC values were always positive. The inversion of MC form positive to negative was not observed in this device. The MC effect of bipolar current can be explained using the electron-hole pair model and exciton-charge reaction model. While the MC effect of uniploar current still need further study, although it can be attributed to the polaron-bipolaron transition in device.
出处 《科学通报》 EI CAS CSCD 北大核心 2011年第18期1425-1430,共6页 Chinese Science Bulletin
基金 教育部留学回国人员科研启动基金(教外司留[2010]1174号) 重庆市自然科学基金(CSTC2010BB9123) 中央高校基本科研业务费专项资金(XDJK2009C085) 西南大学博士基金(SWUB2008016)资助项目
关键词 有机发光二极管 磁电导转变 单极电流 双极化子 organic light-emitting diode inversion of magnetoconductance unipolar current bipolaron
  • 相关文献

参考文献24

  • 1Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem Phys Lett, 2003, 380:710-715.
  • 2Kalinowski J, Cocchi M, Virgili D P, et al. Magnetic field effects on organic electrophosplaorescence. Phys Rev B, 2004, 70:205303.
  • 3Mermer O, Veeraraghavan G, Francis T L, et al. Large magnetoresistance at room-temperature in small-molecular-weight organic semi- conductor sandwich devices. Solid State Comm, 2005, 134:631-636.
  • 4Odaka H, Okimoto Y, Yamada T, et al. Control of magnetic-field effect on electroluminescence in Alq3-based organic light emitting di- odes. Appl Phys Lett, 2006, 88:123501.
  • 5Sheng Y, Mermer O, Wohlgenannt M, et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys Rev B, 2006, 74:045213.
  • 6Prigodin V N, Bergeson J D, Lincoln D M, et al. Anomalous room temperature magnetoresistance in organic semiconductor. Synth Metal, 2006, 156:757-761.
  • 7Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurement of Alq~-based OLEDs. Phys Rev B, 2007, 75: 094423.
  • 8Hu B, Wu Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater, 2007, 6:985-990.
  • 9Bloom F L, Wagernans W, Kemerink M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys Rev Lett, 2007, 99:257201.
  • 10Bloom F L, Wagemans W, Kemerink M, et al. Correspondence of the sign change in organic magnetoresistance with the onset of bipolar charge transport. Appl Phys Lett, 2008, 93:263302.

同被引文献52

  • 1Tang C W, Van Slyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51:913-915.
  • 2Burroughes J, Bradley D, Brown A, et al. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347:539-541.
  • 3Reineke S, Thomschke M, Ltissem B, et al. White organic light-emitting diodes: Status and perspective. Rev Mod Phys, 2013, 85:1245.
  • 4Kalinowski J. Excimers and exciplexes in organic electroluminescence. In: 1 lth International Conference on Electrical and Related Prop- erties of Organic Solids (ERPOS-11). Poland: Mater Sci Poland, 2009. 735-756.
  • 5Chen P, Li M, Peng Q, et al. Direct evidence for the electron-hole pair mechanism by studying the organic magneto-electroluminescence based on charge-transfer states. Org Electron, 2012, 13:1774-1778.
  • 6Feng J, Li F, Gao W, et al. White light emission from exciplex using tris-(8-hydroxyquinoline) aluminum as chromaticity-tuning layer. Appl Phys Lett, 2001, 78:3947-3949.
  • 7Goushi K, Yoshida K, Sato K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photon, 2012, 6:253-258.
  • 8Castellani M, Berner D. Competition between excitons and exciplexes: Experiments on multilayered organic light emitting diodes. J App1 Phys, 2007, 102:024509.
  • 9Gebler D, Wang Y, Blatchford J, et al. Exciplex emission in bilayer polymer light-emitting devices. Appl Phys Lett, 1997, 70:1644-1646.
  • 10Adachi C, Tsutsui T, Saito S. Blue light-emitting organic electroluminescent devices. Appl Phys Lett, 1990, 56:799-801.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部