期刊文献+

电场计算的快速多极子预条件高阶边界元法 被引量:3

Fast multi-pole preconditioned GMRES high order boundary element method for power frequency electric field of multi-medium
下载PDF
导出
摘要 针对多介质工频电场计算中低阶边界元法及预条件(GMRES)法的计算精度低及计算成本高的不足,在低阶边界元法基础上引入高阶边界元和快速多极子法,提出了一种用于求解三维电场分布的快速多极子预条件GMRES高阶边界元法。建立了三维电场计算高阶边界元模型,阐述了快速多极子预条件GMRES高阶边界元法基本原理和具体实现方法;通过双介质实验模型进行了方法验证,并基于500kV变电站部分关键设备的三维电场计算,表明该方法在电场计算精度及在内存消耗和计算时间上均比预条件GMRES法有明显的优势。最后将计算结果与实际测量值进行了比较,该方法的计算结果与测量值最大相对误差为8.65%,该方法更适合于分析变电站这种大尺度多介质环境下的工频电场分布。 In order to improve the computational accuracy and cost for multi-medium power frequency electric field (PFEF) solved by low order boundary element method (BEM) and preconditioned generalized minimal residual (GMRES),a hybrid technique combining the high order BEM and fast multi-pole (FM) method has been introduced to low order BEM. The FM preconditioned GMRES high order BEM is proposed to solve three dimension electric field distribution. The high order BEM model for three dimension electric field distribution is built, and the basic principles and implemen'tation steps of the FM preconditioned GMRES high order BEM are given. The higher accuracy has verified in two medium test models. Part key devices in 500 kV substation is carried out to demonstrate that FM preconditioned GMRES high order BEM is much faster and more efficient than the preconditioned GMRES BEM in the computational cost and the storage of computer. The simulation values of this method are compared with measured values in 500 kV substation. It is found that the max relative error is 8.65%, so this method is suggested for use in large scale and multi-medium PFEF problems.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期1-8,共8页 Journal of Chongqing University
基金 国家自然科学基金资助项目(50877082) 输配电装备及系统安全与新技术国家重点实验室自主研究课题(2007DA10512708304) 输配电装备及系统安全与新技术国家重点实验室访问学者基金项目(2007DA10512709408)
关键词 高阶边界元 变电站 快速多极子 工频电场 boundary element substation fast multi-pole power frequency electric field
  • 相关文献

参考文献21

  • 1I.IU Y J. Dual BIE approaches for modeling electrostatic MEMS problems with thin beams and accelerated by the fast multi pole method[J]. Engineering Analysis with Boundary Elements, 2006,30(11) :940-948.
  • 2LIU Y J,SHEN L. A dual BIE approach for large scale modeling of 3-D electrostatic problems wilh the fast multipole boundary element method[J]. International Journal for Numerical Methods in Engineering, 2007, 71 (7) :837-855.
  • 3SHEN L,I.IU Y J. An adaptive fast multipole boundary element method for three dimensional potential prob- lems[J]. Computational Mechanics, 2007, 39 (6): 681 691.
  • 4BUNSEGERSTNER A,GUTIERREZCANAS I. A pre- conditioned GMRES for complex dense linear systems from electromagnetic wave scattering problems[J]. Lin- ear Algebra and Its Applications, 2006, 416 (1): 135 147.
  • 5ZHA() H P, HU J, NIE Z P. Parallel Modified Electric Field Integral Equation with GMRES Solver for Efficient Solution of Scattering from Electrically Large Open Structures[C]//2007 SBMO/IEEE MTT S Inter- national Microwave and ()ptoelectronics Conference. October 29 November 1,2007, Salvador, Brazil.[s. 1. ] : Institute of Electrical and Electronics Engineers, [2007-12-26].
  • 6I YANG Y,CHEN R S. Numerical simulation of micro strip circuits using unconditional stable CN FDTD method combined with preconditioned GMRESE[C]//In-ternational Conference on Microwave and Millimeter Wave Technology, 2008. April 21-21, 2008, Nanjing, China. [s. 1. ] : Institute of Electrical and Electronics En gineers: [2008 06-13].
  • 7SPYROPOULOS A N, PAI.YVOS J A,B()UDOUVUS A G. Bifurcation detection with the (un)preconditionedGMRES(m) [J]. Computer Methods in Applied Me chanics and Engineering, 2004, 193 ( 42/44 ): 4707-4716.
  • 8BOTROS Y Y, MEMBER S, VOI.AKIS J L Precondi- tioned generalized minimal residual iterative scheme for per{ectly matched layer terminated applications [J]. IEEE Microwave And Guided Wave Letters, 1999, 9(2) :45-47.
  • 9NISHIMURA N, LIU Y J. Thermal analysis of carbon- annotate composites using a rigid-line inclusion model by the boundary integral equation method[J]. Compu- tational Mechanics, 2004,35 ( 1 ) : 1-10.
  • 10LIU Y J,NISHIMURA N. The fast multi-pole bounda- ry element method for potential problems-a tutorial[J]. Engineering Analysis with Boundary Elements, 2005,30 (5):71-381.

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部