期刊文献+

生理过程模糊神经推理的虚拟植物 被引量:2

Virtual plant based on fuzzy neuron Inference of physiology process
下载PDF
导出
摘要 提出一种基于模糊神经生理过程推理系统的植物生长模型。该模型基于机器学习理论,从测量的数据中自动学习拟合植物器官生长函数,提取植物生长规律。在植物生长发育过程中,源库器官根据其生长函数响应虚拟环境,并进行生产、分配、利用同化物。同时器官功能部分的变化反馈到结构部分,对表示植物结构信息的L文法字符串进行修改。当生长环境变化时,模型自动调整生长函数的参数和L文法,在环境中进行优化选择,最终形成适应当前虚拟环境的植物。基于辣椒实验仿真表明,该方法能够准确提取植物生长函数和结构规律,逼真地展现植物对生长环境的响应和适应。 A fuzzy neuron inference of physiological process (FNI-PP) based virtual plant growth model is pro posed. Using machine learning theory, the model can automatically learn and fit the plant growth function according to measured data and extract the plant growth rules. During plant growth, the source and sink organs respond the surrounding virtual environment according to its inbuilt growth function, and produce, allocate and consume assimilates as well as update the L-grammar representing the plant structure. The model can automatically adjust parameters of the growth function and the L-grammar to respond the environmental heterogeneity. Cayenne-based simulations show that the model can accurately extract the growth function and the structural pattern of the plant, and vividly demonstrate the response to environment.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期110-116,共7页 Journal of Chongqing University
基金 国家863计划课题资助项目(2006AA10Z233) 国家自然科学基金资助项目(60773082)
关键词 模糊神经推理 生长函数 L文法 同化物 虚拟植物 fuzzy neuron Inference growth function L-grammar assimilate virtual plant
  • 相关文献

参考文献16

  • 1GUO Y. Plant modeling and its applications to agricul ture[C] // 2nd International Symposium on PlantGrowth Modeling,Simulation, Visualization and Appli cations. November la-17,2006, Beijing, China. CHINA: 1EEE Computer Society, 2006.
  • 2GODIN C, SINOQUET H. Functional structural plant modeling[J]. New Phytologist, 2005,166 (3) : 705-708.
  • 3MUYSKENS M. The fluorescence of lignum nephritic- urn: a flash back to the past and a simple demonstration of natural substance fluorescence[J]. Journal of Chemi cal Education,2006,83(5) :765-768.
  • 4ALLEN M,PRUSINKIEWlCZ P, DEJONG T. Using I. systems for modeling source-sink interactions, archi tecture and physiology of growing trees: the L-PEACH model[J]. New Phytologist, 2005,166(3) : 869-880.
  • 5刘颖慧,贾海坤,高琼.植物同化物分配及其模型研究综述[J].生态学报,2006,26(6):1981-1992. 被引量:42
  • 6HOI.TTA T,VESALAT T,SEVANTO S,et al. Mod eling xylem and phloem water ows in trees according to cohesion theory and Munch hypothesi[J]. Trees, 2006, 20(1):67-78.
  • 7HEUVELINK E, BUISKOOI. R P M. Influence of sink-source interaction on dry matter production in to mato[J]. Annals of Botany, 1995,75 ; 381-389.
  • 8QU H C,ZHU Q S,ZENG L Q,et al. Automata-based L-Grammar extraction from multiple images for virtual plants[C/OL] // the Third International Conference onBio-Inspired Computing: Theories and Applications. Adelaide, Australia, September 28-October 1, 2008. [2008-09-24]. http: //ieeexplore. ieee. org/xpls/abs all. jsp? tp= &-arnumber=4656709.
  • 9PRUSINNIEWICZ P, LINDENMAYER A. The algo rithmic beauty of plants [M]. New York: Springer Verlag, 19 9 6.
  • 10CHELLE M,ANDRIEU B. Modelling the light environ ment of virtual crop canopies[C] //Workshop on Func tional-Structural Plant Modelling in Crop Production. March 5 8, 2006, Wageningen, The Netherlands. [S. 1] : Springer Science Business Media, 2006.

二级参考文献107

  • 1Farrar J F,Jones D L.The control of carbon acquisition by roots.New Phytologist,2000,147:43 ~ 53.
  • 2Zavala J A,Ravetta D A.Allocation of photoassimilates to biomass,resin and carbohydrates in Grindelia chiloensis as affected by light intensity.Field Crops Research,2001,69:143 ~ 149.
  • 3Vyn T J,Hooker D C.Assessment of multiple-and single-factor stress impacts on corn.Field Crops Research,2002,75:123 ~ 137.
  • 4Zhang J H.Interactive effects of soil nutrients,moisture and sand burial on the development,physiology,biomass and fitness of Cakile edentula.Annals of Botany,1996,78:591 ~ 598.
  • 5Thornley J H M.A balanced quantitative model for root:shoot ratios in vegetative plants.Annals of Botany,1972,36:431 ~ 441.
  • 6Heuvelink E,Marcelis L F M.Dry matter distribution in tomato and cucumber.Acta Horticulturae,1989,260:149~ 157.
  • 7Daudet F A,Lacointe A,Gaudillère J P,et al.Generalized Münch coupling between sugar and water fluxes for modeling carbon allocation as affected by water status.Journal of Theory Biology,2002,214:481 ~ 498.
  • 8Jones J W,Dayan E,Allen L H,et al.A dynamic tomato growth and yield model (TOMGRO).Transactions of the American Society of Agricultural Engineers,1991,34:663 ~ 672.
  • 9Dewar R C.A root-shoot partitioning model based on carbon-nitrogen-water interactions and Münch phloem flow.Functional Ecology,1993,7:356 ~ 368.
  • 10Marcelis L F M.A simulation model for dry matter partitioning in cucumber.Annals of Botany,1994,74:43 ~ 52.

共引文献41

同被引文献53

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部