期刊文献+

融合Canny边缘检测技术的SAR图像改进滤波方法 被引量:4

Improved SAR image denoising algorithm of fusing Canny edge extraction technology
下载PDF
导出
摘要 5×5窗口的增强型Lee滤波方法能够有效抑制相干斑噪声,但边缘细节等纹理信息损失严重。针对增强型Lee滤波方法的这一缺点,结合边缘提取技术,提出改进的滤波方法。该算法首先对图像进行5×5窗口增强型Lee滤波处理,然后对图像使用Canny算子进行边缘纹理信息提取,最后将增强型Lee滤波后图像的边缘和纹理区域的像元值用边缘提取技术得到的结果进行取代。通过利用均值滤波、Lee滤波及其增强型、Kuan滤波及其增强型、Gamma MAP滤波和改进方法对SAR图像进行处理,得到改进的滤波方法在克服相干斑抑制和边缘保持这一对矛盾上是有效的。 Enhanced Lee filtering method with 5×5 window can effectively suppress speckle noise,but the edge details and texture information loss seriously.Against the shortcoming of the enhanced Lee filter,according to the characteristic of the edge extraction,a new algorithm was proposed,which fuses the enhanced Lee filter and the edge extraction technology.In this algorithm,first the image was filtered using the enhanced Lee filter with 5×5 window.Then the edge and texture information of the image can be obtained through the Canny edge extraction technology.At last the pixel values of the edge and texture area of the filtered image are replaced by the result of the edge extraction.Experimental data quantitative shows that the improved filtering method can overcome the contradiction between the speckle suppressing and the edge preserving.
出处 《黑龙江工程学院学报》 CAS 2011年第2期6-9,38,共5页 Journal of Heilongjiang Institute of Technology
基金 国家自然科学基金资助项目(41071273) 高等学校博士学科点专项科研基金资助项目(20090095110002) 中央高校基本科研业务费专项资金资助项目(2010QNA21)
关键词 合成孔径雷达图像 相干斑噪声 CANNY算子 增强型Lee滤波 边缘提取 SAR image speckle noise Canny enhanced Lee filter edge extraction
  • 相关文献

参考文献7

  • 1J. S. LEE. Digital image enhancement and noise filtering by use of locat statistics[J]. IEEE Trans. Pattern Anal- ysis and Machine Intelligence, 1980, 2(2):165-168.
  • 2D. T. KUAN, A. A. SAWEHUK, T. C. STRAND, et al. Adaptive noise smoothing filter for images with signal dependent noise [J].IEEE Trans. Pattern Analysis and Machine Intelligence, 1985, 7(2) : 165-177.
  • 3A. LOPES, E. NEZRY, R. TOUZI, et al. Maximum aposteriori speckle filtering and first order texture models in SAR images[J]. Proc. IGARSS 90. College Park, MD, 1990, 3:2409-2412.
  • 4焦李成,张向荣.智能SAR图像处理与解译[M].北京:科学出版社,2007.
  • 5YAN J, ZHANG, J. An efficient method to generate feasible paths for basis path testing [J]. Information Processing Letters, 2008, 107(1): 87-92.
  • 6MCCABE T J. Structural testing: A software testing methodology using the cylomatic complexity metric [M]. Baltimore: McCabe and Assaciates, 1987.
  • 7韩春明,郭华东,王长林,范典.一种改进的SAR图像斑点噪声滤波方法[J].遥感学报,2004,8(2):121-127. 被引量:24

二级参考文献16

  • 1邹谋炎.反卷积和信号复原.中国科大研究生院(北京)教材[M].,1999..
  • 2Shi Z H, Fung K B. A Comparison of Digital Speckle Filters [A].Proceeding of International Geoscience and Remote Sensing Symposium, IGARSS'94 (New York: IEEE)[C], 1994, 2129-2133.
  • 3Lee J S. Speckle Suppression and Analysis for Synthetic Aperture Radar Images [J]. Optical Engineering, 1986, 25 (5) : 636-643.
  • 4Lee J S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2, (2) : 165-168.
  • 5Kuan D T, Sawchuk A A, Strand T C et al. Adaptive Noise Smoothing Filter for Images with Signal-dependent Noise[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7,(2): 165-177.
  • 6Frost V S, Stiles J A, Shanmugan K S, et al. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplieatire Noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, PAMI-4, (2): 157-166.
  • 7Lopes A, Touzi R, Nezry E. Adaptive Speckle Filters and Scene Heterogeneity [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28 (6): 992-1000.
  • 8Kuan D T, Sawehuk A A, Strand T C, et al. Adaptive Restoration of Images with Speckle [ J ]. IEEE Transactions on Acoustics,Speech, and Signal Processing, 1987, ASSP-3S (3): 373-383.
  • 9Crimmins T R. Geometric Filter for Speckle Reduction [J]. Applied Optics, 1985, 24 (10): 1438-1443.
  • 10Dong Y, Forster B C, Milne A K, et al. Speckle Suppression Using Recursive Wavelet Transforms [ J]. International Journal of Remote Sensing, 1998, 19 (2): 317-330.

共引文献23

同被引文献44

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部