期刊文献+

关于分数阶多阶延迟微分方程的解的存在性 被引量:6

The Existence of Solutions for Multi-order Fractional Differential Delay Equation
下载PDF
导出
摘要 本文主要讨论了分数阶多阶延迟微分方程的解的存在性,并得到了相应的理论性结果,为研究分数阶多阶多延迟微分方程的解析解的结构以及数值解提供了理论保证,有一定的指导意义。 In this paper,we denote to study the existence of solutions for multi-order fractional differential delay equation.And a theoretical existence of solutions is also given.The theoretical results are very helpful for the study of analytical solutions and numerical solutions of multi-order fractional differential delay equation.
作者 杨水平
机构地区 惠州学院数学系
出处 《惠州学院学报》 2011年第3期29-31,共3页 Journal of Huizhou University
基金 广东省自然科学基金项目(10151601501000003)
关键词 多阶 分数阶延迟微分方程 存在性 fractional differential delay equation multi-order existence
  • 相关文献

参考文献6

  • 1DELBOSCO D,, RODINO L. Existence and uniqJeness for a nonlinear fractional differential equation[ J]. J. Math. Anal. Appl. , 1996,204 : 609 - 625.
  • 2SAYED A M A. Nonlinear functional differential Linear equations of arbitrary orders [ J]. Nonlinear Analysis, 1998,33 (2) 181 - 186.
  • 3ZHANG S. The existence of a positive solution for a nonlinear fractional differential equation [ J ]. J. Math. Anal. Appl. ,2000, 252:804 -812.
  • 4BABAKHANI A,DAFTARDAR G V. Existence of positive solutions of nonlinear fractional differential equations[ J]. J. Math. A- nal. Appl. ,2003,278:434 -442.
  • 5E1 -SAYED A M A, E1- MAGHRABI E M. Stability of a monotonic solution of a non- autonomous multidimensional delay dif- ferential equation of arbitrary (fractional) orderl[J] , Electronic Journal of Qualitative Theory of Differential Equations ,2008,16 : 1 -9;.
  • 6PODIUBNY I. Fractional differential equations[ M]. Academic Press,New York, 1999,.

同被引文献26

  • 1DAS S, GUPTA P K, VISHAL K. Approximate approach to the Das model of fractional logistic population growth [J]. Appl Appl Math, 2010, 5(10) :1702 -1708.
  • 2EL-SAYED A M A, EL-MESIRY A E M, EL-SAKA H A A. On the fractional-order logistic equation [ J ]. Appl Math Lett, 2007, 20:817 -823.
  • 3ABBAS S, BANERJEE M, MOMANI S. Dynamical anal- ysis of fractional-order modified logistic model [J]. Com- put Math Appl, 2011, 62:1098 - 1104.
  • 4EL-SAYED A M A, EL-SAKA It A A, EL-MAGHPtABI E M. On the fractional-order logistic equation with two different delays [J]. Z Naturforsch, 2011, 66a: 1 -5.
  • 5SWEILAM N H, KHADER M M, MAHDY A M S. Nu- merical studies for fractional-order logistic differential e- quation with two different delays [ J ]. J Appl Math, 2012, ID 764894 : 1 - 14.
  • 6SWEILAM N H, KHADER M M, MAHDY A M S. Nu- merical studies for solving fractional-order logistic equa- tion[J]. lnt J Pure Appl Math, 2012, 78:1199 - 1210.
  • 7ZHANG X Y. Some results of linear fractional order time-delay system [ J ]. Appl Math Comput, 2008, 197:407 -411.
  • 8DENG W H, LI C P, LU J H. Stability analysis of line- ar fractional differential system with multiple time delays [J]. Nonlinear Dynam, 2007, 48:409-416.
  • 9KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equation [ M]. New York: Elsevier, 2006.
  • 10BHALEKAR S, DAFTARDAR-GEJJI V. A predictor- corrector scheme for solving nonlinear delay differential equations of fractional order [ J ]. J Fract Calc Appl, 2011, 6: 1-9.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部