期刊文献+

最大度为6且不含5-圈和相邻4-圈的平面图是7-全可染的

On the 7-total-colorability of plane graphs with maximum degree 6 without 5-cycles and adjacent 4-cycles
下载PDF
导出
摘要 运用Discharging方法,证明了最大度为6且不含5-圈和相邻4-圈的简单平面图是7-全可染的.所得结果改进了现有文献的相关结果. By using the discharging method,it was proved that plane graphs with maximum degree 6 and without 5-cycles and adjacent 4-cycles were 7-totally-colorable.This improved the known results in literatures.
作者 张静雯
出处 《浙江师范大学学报(自然科学版)》 CAS 2011年第3期272-276,共5页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省自然科学基金资助项目(Y6090699)
关键词 平面图 全染色 最大度 5-圈 相邻4-圈 plane graph total coloring maximum degree 5-cycles adjacent 4-cycles
  • 相关文献

参考文献13

  • 1Bondy J A, Murty U S R. Graph theory with applications[ M]. London:Macmillan Press, 1976.
  • 2Vizing V G. Some unsolved problems in graph theory [ J ]. Uspekhi Mat Nauk, 1968,23 (6) :117-134.
  • 3Behzad M. Graphs and their chromatic numbers [ D ]. East Lansing:Michigan State University, 1965.
  • 4Kostochka A V. The total coloring of a multigraph with maximal degree 4[ J]. Discrete Math, 1977,17 (2) :161-163.
  • 5Kostochka A V. The total chromatic number of any multigraph with maximal degree five is at most seven [J].Discrete Math, 1996, 162(1/2/3) :199-214.
  • 6Rosenfeld M. On the total coloring of certain graphs [J]. Israel J Math, 1971,9 (3) :396-402.
  • 7Vijayaditya N. On total chromatic number of a graph[J]. London Math Soc, 1971,3 (2) :405-408.
  • 8Yap H P. Total coloring of graphs [ M ]. Belin: Spring-Verlag, 1996.
  • 9Borodin O V, Kostochka A V, Woodall D R. Total coloring of planar graphs with large maximum degree[ J ]. Graph Theory, 1997,26 (1) :53- 59.
  • 10Wang Weifan. Total chromatic number of planar graphs with maximum degree ten [ J ]. Graph Theory,2007,54 ( 1 ) :91-102.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部