摘要
把文献《关于实方阵的正定性》的定理6中实对称正定矩阵和实正定矩阵分别推广到Herm ite正定矩阵和复正定矩阵中去,得到了复正定矩阵与Herm ite正定矩阵的Hadamard乘积是复正定矩阵的结论,并给出了2个推论。
In this paper,based on the theorem,we find that the product of complex positive definite matrix and Hermite positive definite matrix is complex positive definite matrix by expanding real symmetric positive definite matrix to Hermite positive definite matrix and expanding real positive definite matrix to complex positive definite matrix.Two corollaries have been introduced.These studies have definite academic value.
出处
《重庆理工大学学报(自然科学)》
CAS
2011年第6期121-123,共3页
Journal of Chongqing University of Technology:Natural Science
基金
贵州省教育厅自然科学基金资助项目(黔教科20090080)
关键词
对称矩阵
非奇异方阵
共轭矩阵
HADAMARD乘积
复方阵
symmetric matrix
nonsingular square matrix
conjugate matrix
Hadamard product
complex square matrix