摘要
本文报道最简单三阶张弛振子的实验电路、映象描述,及对其从准周期向混沌过渡的临界行为的实验研究,并说明了这些临界行为的普遍意义。我们测得沿临界线准周期集的分数维为:D=0.88±0.01;以及当绕数逼近黄金分割比时,映象参数的收敛比平均值为:■-2.85±0.1。这些结果与圆映象理论很好地符合,从而对Cumming等人得出的D=0.795±0.005及δ_n 的值在-3.3±0.1与-2.7±0.2之间的结论作了较圆满的解释。
The experimental Circuit,map description,and the experimental study on the critical
behavior at the transition from quasiperiodicity to chaos for the symplest cubic relaxation
oscillator are reported.The universality of these critical behaviors is explained.The fractal
dimension of the quasiperiodic set álong the critical line is measured as D=0.88+0.01;and
the of the number convergence ratio of the map parameter when the winding number con-
verges goldenmean is(?)=-2.85+0.1.The results are in verry good agreement ith the theory
of circle map.That give a good explanation to the results of D=0.795+0.005 and-3.3+0.1
<δ(?)-2.7+0.2 obtained by Cumming et al.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
1990年第3期21-26,共6页
Journal of Northwest University(Natural Science Edition)
关键词
三阶张弛振子
临界行为
圆映象
Cubic relaxation oscillator
Quasiper iodictity
Chaos
Critical behavior
Fractal dimension
Winding number
Circle map.