期刊文献+

复合边界条件下功能梯度板1:1内共振的周期与混沌运动 被引量:4

PERIODIC AND CHAOTIC MOTION OF MEXIED BOUNDARY FGM PLATE WITH 1:1 INTERNAL RESONANCE
下载PDF
导出
摘要 以两对边简支另两对边自由的功能梯度材料板为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式. This paper studied the nonlinear vibration of FGM plate with two simply supported opposite and two free edges subjected to the in-plane and transversal excitations.The geometrical nonlinear system,whose material properties of the FGM plate are assumed to be temperature dependent,was used.The resonant case considered here is 1:1 internal resonance and principal parametric resonance-1/2 subharmonic resonance.The asymptotic perturbation method was utilized to obtain four-dimensional nonlinear averaged equation.Numerical method was used to find the nonlinear dynamic responses of the FGM rectangular plate.It is found that there exist periodic,quasiperiodic solutions and chaotic motions for the plates under certain conditions.It is thought that the forcing excitations can change the form of motions for the FGM rectangular plate.It is also found from the numerical simulations that the amplitude of the first mode for the FGM plate is much less than that of the second mode in the given parameters.It means that we must consider the second mode when the internal resonance occurs.
出处 《动力学与控制学报》 2011年第2期117-122,共6页 Journal of Dynamics and Control
基金 国家自然科学基金(10972026和10732020) 北京自然科学基金(1112013) 北京市教委科技计划项目(KM201010772003) 北京市属高等学校人才强教计划资助项目(PHR200906213)~~
关键词 功能梯度材料板 复合边界条件 混沌运动 内共振 functionally graded material plate mixed boundary chaotic motions internal resonance
  • 相关文献

参考文献15

  • 1M Koizumi. The concept of FGM, ceramic transactions. Functionally Gradient Materials, 1996,34 : 3 - 10.
  • 2Z Q Cheng, R C Batra. Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration, 2000 : 229 : 879 - 895.
  • 3T Y Ng, K Y Lam, K M Liew. Effect of FGM materials onthe parametric resonance of plate structures. Computer Methods in Applied Mechanics and Engineering, 2000 : 19 : 953 - 962.
  • 4J Yang, H S Shen. Dynamic response of initially stressed functionally graded rectangular thin plates. Composite Structures, 2001:54 : 497 - 508.
  • 5F Qian, R C Batra, L M Chen. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method. Composites Part B, 2004,35 : 685 - 697.
  • 6S V Senthil, R C Batra. Three-dimensional exactsolution for the vibration of functionally graded rectangular plates. Journal of Sound and Vibration, 2004,272:703-730.
  • 7Y X Hao, W Zhang, L H Chen. Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. Journal of Sound and Vibration, 2008,312 : 862 - 892.
  • 8Y X Hao, W Zhang. Periodic and Chaotic Motions of a Simply Supported FGM Plate with two degrees-of-freedom. Advanced Materials Research, 2008,47-50 : 1137 - 1140.
  • 9J N Reddy. Mechanics of laminated composite plates and shells: theory and analysis. New York: CRC Press, 2004, 8:473 - 475.
  • 10A Nosir, J N Reddy. A study of non-linear dynamic equations of higher-order deformation plate theories. Interna- tional Journal of Non-Linear Mechanics, 199i ,26 : 233 249.

二级参考文献9

  • 1边祖光,陈伟球,丁皓江.正交各向异性功能梯度圆柱壳的自由振动[J].应用力学学报,2004,21(3):75-78. 被引量:7
  • 2Parveen G N,Reddy J N.Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J].International Journal of Solids Structures,1998,35(33):4457-4476.
  • 3Ng T Y,Lam K Y,Liew K M.Effect of FGM materials on the parametric resonance of plate structures[J].Computer Methods in Applied Mechanics and Engineering,2000,19:953-962.
  • 4Yang J,Shen H S.Dynamic response of initially stressed functionally graded rectangular vthin plates[J].Composite Structures,2001,54:497-508.
  • 5Yang J,Shen H S.Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels[J].Journal of Sound and Vibration,2003,261:871-893.
  • 6Yang J,Shen H S.Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environment[J].Journal of Sound and Vibration,2002,255:579-602.
  • 7Hao Y X,Chen L H,Zhang W.Nonlinear oscillations,bifurcations and chaos of functionally graded materials plate[J].Journal of Sound and Vibration,2008,312:862-892.
  • 8Nayfeh A H,Balachandran B.Modal Interactions in dynamical and Structural Systems[J].ASME Applied Mechanics Reviews,1989,42:175-210.
  • 9伍晓红,沈亚鹏.压电功能梯度板自由振动的三维解[J].固体力学学报,2003,24(1):75-82. 被引量:20

共引文献6

同被引文献28

  • 1GUO Xiang Ying,ZHANG Wei & YAO MingHui College of Mechanical Engineering,Beijing University of Technology,Beijing 100124,China.Nonlinear dynamics of angle-ply composite laminated thin plate with third-order shear deformation[J].Science China(Technological Sciences),2010,53(3):612-622. 被引量:8
  • 2Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control and Dynamics,1987,10 (2):139 ~ 151.
  • 3Banerjee A K,Kane T R..Dynamics of a plate in large overall motion.Journal of Applied Mechanics,1989,56:887~ 892.
  • 4Boutaghou Z E,Erdman A G,Stolarski H K.Dynamics of flexible beams and plates in large overall motions.Journal of Applied Mechanics,1992 ; 59:991 ~ 999.
  • 5Yoo H H,Chung J.Dynamics of rectangular plates undergoing prescribed overall motion.Journal of Sound and Vibration,2001,239(1):123 ~ 137.
  • 6Neto M A,Jorge A C,Ambro'sio,Roger'io P.Leal.Composite material in flexible multibody systems.Computer Methods in Applied Mechanics and Engineering,2006,195:6860 ~ 6873.
  • 7Yoo H H,Kim S K,Inman D J.Modal analysis of rotating composite cantilever plates.Journal of Sound and Vtbration,2002,285 (2):233 ~ 246.
  • 8Piovan M T,Sampaio R.A study on the dynamics of rotating beams with functionally graded properties.Journal of Sound and Vibration,2009,327:134 ~ 143.
  • 9Reddy J N.Analysis of functionally graded plates.International Journal for Numerical Methods in Engineering,2000,47:663 ~ 684.
  • 10Rule J A,Richard R E,Clark R L.Design of an aero elastic delta wing model for active flutter control.Journal of Guidance Control and Dynamics,2001,24 (5):918 ~924.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部