期刊文献+

基于最优分割位点的蛋白质亚细胞位点预测方法 被引量:2

Prediction of protein subcellular location using optimal cleavage site
下载PDF
导出
摘要 蛋白质的亚细胞位点信息有助于我们了解蛋白质的功能以及它们之间的相互作用,同时还可以为新药物的研发提供帮助。目前普遍采用的亚细胞位点预测方法主要是基于N端分选信号或氨基酸组分特征,但研究表明,单纯基于N端分选信号或氨基酸组分的方法都会丢失序列的序信息。为了克服此缺陷,本文提出了一种基于最优分割位点的蛋白质亚细胞位点预测方法。首先,把每条蛋白质序列分割为N端、中间和C端三部分,然后在每个子序列和整条序列中分别提取氨基酸组分、双肽组分和物理化学性质,最后我们把这些特征融合起来作为整条序列的特征。通过夹克刀检验,该方法在NNPSL数据集上得到的总体精度分别是87.8%和92.1%。 Protein subcellular locations has immediate relevance for understanding protein function and designing new drug.Present methods are mainly based on sorting signals or amino acid compositions.However,methods based solely on sorting signals or amino acid compositions may lose the sequence order information.To overcome the shortcomings,we divided each chain into three parts:N-terminal,middle,and C-terminal.Then,features were extracted from each part and the whole chain independently.These features are amino acid compositions,dipeptides,and stereochemical properties.Finally,features of different parts are combined and the combined features are used as features of the whole chain.By Jackknife test on the NNPSL dataset,our overall accuracies for prokaryotic and eukaryotic proteins are 87.8% and 92.1%,respectively.
出处 《生物信息学》 2011年第2期171-175,180,共6页 Chinese Journal of Bioinformatics
基金 国家自然科学基金(No.10731040) 上海市重点科学项目(No.S30405) 上海教育厅创新项目(No.09zz134)
关键词 蛋白质序列 亚细胞位点 夹克刀检验 总体精度 特征融合 Protein sequence Subcellular location Jackknife test optimal cleavage site Combined feature
  • 相关文献

参考文献18

  • 1Chou KC, Shen HB. Cell - PLoc : a package of web - servers for predicting snbcellular localization of proteins in various organisms [J~. Nat Protoe, 2008, 3:153 - 162.
  • 2Murphy RF, Boland MV, Velliste M. Towards a systematics for protein subcellular location : quantitative description of protein lo- calization patterns and automated analysis of fluorescence micro- scope images [ J]. Proc Int Conf Intell Syst Mol Biol, 2000, 8: 251 - 259.
  • 3Nakai K. Protein sorting signals and prediction of subcellular localization [J]. Adv Protein Chem, 2000, 54:277 - 344.
  • 4Emanuelsson O, Nielsen H, Brunak S, et al.. Predicting subcel- lular localization of proteins based on their N - terminal amino acid sequence [J]. Mol. Biol, 2000, 300:1005 - 1016.
  • 5Nakai K, Kanehisa M. Expert system for predicting protein locali- zation sites in Gram- negative bacteria [ J ]. Proteins, 1999, 11: 95 - 110.
  • 6Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction [ J ]. Bioinformaties, 2001, 17 : 721 - 728.
  • 7Nakashima H, Nishikawa K. Discrimirtation of intracellular and extracellular proteins using amino acid composition and residue - pair frequencies [J]. Mol Biol, 1994, 238:54 - 61.
  • 8Cedano J, Aloy P, Pe'rez -Pons JA, et al. Relation between amino acid composition and cellular location of proteins [ J ]. Mol. Biol, 1997, 266:594 - 600.
  • 9Reiuhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins [ J ]. Nucleic Acids Res, 1998, 26. 2230 - 2236.
  • 10Chou KC, Elrod DW. Using discriminant function for prediction of subcellular location of prokaryotie proteins [Jl. Biochem. Bio- phys. IRes. Commun, 1998, 252:63-68.

二级参考文献15

  • 1Evangelia I. Petsalaki,Pantelis G. Bagos,Zoi I. Litou,Stavros J. Hamodrakas.PredSL: A Tool for the N-terminal Sequence-based Prediction of Protein Subcellular Localization[J].Genomics, Proteomics & Bioinformatics,2006,4(1):48-55. 被引量:5
  • 2HOGLUND A, DONNES P, BLUM T, et al. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition [ J ]. Bioinformatics, 2006,22 ( 10 ) : 1158 - 1165.
  • 3REINHARDT A, HUBBARD T. Using neural networks for prediction of the subcellular location of proteins [ J ]. Nucleic Acids Res, 1998,26 (9) :2230 - 2236.
  • 4HUA S J, SUN Z R. Support vector machine approach for protein subcellular location prediction [ J ]. Bioinformatics,2001,17 :721 - 728.
  • 5MATSUDA S, VERT J P, SAIGO H, et al. A novel representation of protein sequences for prediction of subcellular location using support vector machines [ J ]. Protein Sci ,2005,14:2804 - 2813.
  • 6GUO J,LIN Y, SUN Z. A novel method for protein subcellular localization: Combining residue-couple model and SVM[C]. Proceedings of the 3rd Asia-Pacific Bioin- formatics Conference, Singapore,2005,117 - 129.
  • 7CHOU K C, CAI Y D. Using functional domain composition and support vector machines for prediction of protein subcellular location [ J]. J Biol Chem,2002,277 (48) : 45765 - 45769.
  • 8SCOTT M S,THOMAS D Y, HALLETT M T. Predicting subcellular localization via protein motif co-occurrence [J]. Genome Res,2004,14 : 1957 - 1966.
  • 9XIE D, LI A, WANG M. LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST [ J ]. Nucleic Acids Res, 2005,33:105 - 110.
  • 10TAMURA T, AKUTSU T. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition [ J ]. BMC Bioinformatics,2007,8:466.

共引文献2

同被引文献33

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部