摘要
若给定任意一个n阶首1复系数多项式f(λ),都存在一个复矩阵B∈Q(A),使得的特征多项式为f(λ),则称n×n复符号模式矩阵A是谱任意的.如果A是一个谱任意复符号模式矩阵且A的任意真子模式都不是谱任意的,那么A是一个极小谱任意复符号模式矩阵.本文扩展了N-J方法证明了一个的复符号模式矩阵是极小谱任意的n≥4.
A complex sign pattern matrix A of order n is a spectrally arbitrary pattern if given any monic polynomial f(λ) with coefficients from C of order n,there exists a complex matrix B in Q(A) such that the characteristic polynomial of B is f(λ).If A is a spectrally arbitrary complex sign pattern matrix,and no proper subpattern of A is spectrally arbitrary,then A is a minimal spectrally arbitrary complex sign pattern matrix.In this paper,we extend the Nilpotent-Jacobian method to prove a complex sign pattern matrix is minimally spectrally arbitrary pattern for all orders n≥4.
出处
《海南师范大学学报(自然科学版)》
CAS
2011年第2期119-122,共4页
Journal of Hainan Normal University(Natural Science)
基金
国家自然基金项目(11071227)
山西省自然科学基金资助项目(2008011009)
关键词
复符号模式
蕴含幂零
谱任意模式
极小谱任意
Complex Sign pattern
Potentially nilpotent
Spectrally arbitrary pattern
Minimally spectrally arbitrary